- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Microscopy and Spectroscopy Study of Nanostructural Phase Transformation from β-MoO3 to Mo under UHV – MBE Conditions
摘要: We report a simple reduction of molybdenum oxide (β-MoO3) grown on reconstructed Si(100) by thermal annealing in ultra-high vacuum (UHV) using molecular beam epitaxy (MBE). By increasing the substrate temperature during deposition or the annealing temperature after growth, the morphologies of as-deposited structures were found to vary from nanoribbons (NRs) of β-MoO3 to nanoparticles (NPs) of Mo. The change in morphologies have been associated with a structural transition from β-MoO3 to MoO2 at 400 °C and MoO2 to Mo at 750 °C. The in-situ X-ray photoelectron spectroscopy (XPS) measurements revealed a shift of the Mo 3d peaks towards lower binding energies, representing the reduction in Mo oxidation states until a pure Mo 3d peak at 750°C was observed. The ex-situ KPFM measurements showed a decrease in the local work function (Φ) (from ≈ 5.27 ± 0.05 eV to ≈ 4.83 ± 0.05 eV) with increasing substrate temperature. A gradual reduction of the band gap from ≈ 3.32 eV for β-MoO3 NRs to zero band gap for Mo NPs is also observed during the annealing up to 750 °C.
关键词: in-situ XPS,KPFM,molecular beam epitaxy (MBE),Mo nanoparticles,β-MoO3 nanoribbons,phase transition
更新于2025-09-23 15:22:29
-
Biodissolution and cellular response to MoO <sub/>3</sub> nanoribbons and a new framework for early hazard screening for 2D materials
摘要: Two-dimensional (2D) high-aspect-ratio sheet-like materials are a broad class of synthetic ultra-thin sheet-like solids whose rapid pace of development motivates systematic study of their biological effects and safe design. A challenge for this effort is the large number of new materials and their chemical diversity. Recent work suggests that many 2D materials will be thermodynamically unstable and thus non-persistent in biological environments. Such information could inform and accelerate safety assessment, but experimental data to confirm the thermodynamic predictions are lacking. Here we propose a framework for early hazard screening of nanosheet materials based on biodissolution studies in reactive media, specially chosen for each material to match chemically feasible degradation pathways. Simple dissolution and in vitro tests allow grouping of nanosheet materials into four classes: A, potentially biopersistent; B, slowly degradable (>24–48 hours); C, biosoluble with potentially hazardous degradation products; and D, biosoluble with low-hazard degradation products. The proposed framework is demonstrated through an experimental case study on MoO3 nanoribbons, which have a dual 2D/1D morphology and have been reported to be stable in aqueous stock solutions. The nanoribbons are shown to undergo rapid dissolution in biological simulant fluids and in cell culture, where they elicit no adverse responses up to 100 μg ml?1 dose. These results place MoO3 nanoribbons in Class D, and assigns them a low priority for further nanotoxicology testing. We anticipate use of this framework could accelerate the risk assessment for the large set of new powdered 2D nanosheet materials, and promote their safe design and commercialization.
关键词: 2D materials,nanosheets,cytotoxicity,hazard screening,biodissolution,MoO3 nanoribbons
更新于2025-09-04 15:30:14