- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Acceptora??donora??acceptor type molecules for high performance organic photovoltaics a?? chemistry and mechanism
摘要: The study of organic photovoltaics (OPVs) has made great progress in the past decade, mainly attributed to the invention of new active layer materials. Among various types of active layer materials, molecules with A–D–A (acceptor–donor–acceptor) architecture have demonstrated much great success in recent years. Thus, in this review, we will focus on A–D–A molecules used in OPVs from the viewpoint of chemists. Notably, the chemical structure–property relationships of A–D–A molecules will be highlighted and the underlying reasons for their outstanding performance will be discussed. The device stability correlated to A–D–A molecules will also be commented on. Finally, an outlook and challenges for future OPV molecule design and device fabrication to achieve higher performance will be presented.
关键词: chemical structure–property relationships,device stability,organic photovoltaics,acceptor–donor–acceptor,molecule design
更新于2025-09-23 15:21:01
-
Over 14% Efficiency Nonfullerene All-Small-Molecule Organic Solar Cells Enabled by Improving the Ordering of Molecular Donor via Side-Chains Engineering
摘要: Improving the short current density (Jsc) is a big challenge for gaining highly efficient nonfullerene all-small-molecule organic solar cells (NFASM-OSCs). Herein, a novel small molecular donor, BT-2F which is derived from previously reported BTEC-2F, was designed and synthesized. The shortened alkyl-chains with higher regularity endow BT-2F with more ordered packing arrangement and more compact lamellar stacking as evidenced by the characterization of differential scanning calorimetry and grazing incidence X-ray diffraction. By blending BT-2F with Y6 or N3, BT-2F based devices showed impressive power conversion efficiencies (PCEs) of 13.80% and 14.09% respectively, much higher than the reported PCE of 13.34% for BTEC-2F:Y6. Besides, the efficiency of 14.09% is also among the highest PCE value reported so far for NFASM-OSCs. The distinctly improved Jsc devoted major efforts to enhancing the PCE values, meanwhile both BT-2F:Y6 and BT-2F:N3 still keep the high fill factors over 70%, which are ascribed to the good balance between high crystallinity and proper phase separation.
关键词: Morphology control,Crystallinity,Highly efficient nonfullerene organic solar cells,Molecular packing arrangement,Molecule design
更新于2025-09-23 15:19:57