- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
TiO2 Nanoparticles Catalyze Oxidation of Huntingtin Exon 1-Derived Peptides Impeding Aggregation: a Quantitative NMR Study of Binding and Kinetics
摘要: Polyglutamine expansion within the N-terminal region of the huntingtin protein results in the formation of intracellular aggregates responsible for Huntington’s disease, a fatal neurodegenerative condition. The interaction between TiO2 nanoparticles and huntingtin peptides comprising the N-terminal amphiphilic domain without (httNT) or with (httNTQ10) a ten-residue C-terminal polyglutamine tract, is investigated by NMR spectroscopy. TiO2 nanoparticles decrease aggregation of httNTQ10 by catalyzing the oxidation of Met7 to a sulfoxide, resulting in an aggregation-incompetent peptide. The oxidation agent is hydrogen peroxide generated on the surface of the TiO2 nanoparticles either by UV irradiation or at low steady-state levels in the dark. The binding kinetics of non-aggregating httNT to TiO2 nanoparticles is characterized by quantitative analysis of 15N dark state exchange saturation transfer and lifetime line broadening NMR data. Binding involves a sparsely-populated intermediate that experiences hindered rotational diffusion relative to the free state. Catalysis of methionine oxidation within the N-terminal domain of the huntingtin protein may potentially provide a strategy for delaying the onset of Huntington’s disease.
关键词: Huntingtin,TiO2 nanoparticles,aggregation,NMR spectroscopy,oxidation
更新于2025-09-04 15:30:14