- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Application of Nanostructured Tungsten Fabricated by Helium Plasma Irradiation for Photoinduced Decolorization of Methylene Blue
摘要: The dendritic nanostructure was fabricated on a surface of tungsten plate by helium plasma irradiation. The nanostructure consisting of W metal was partially oxidized to form WO3 on exposure to air, and the resulting surface exhibited a broad photoabsorption in the range from 1 to 5 eV. We examined photoinduced reaction of methylene blue (MB) on the material. It was found that the partially and fully oxidized surface nanostructures were able to promote a decolorization of MB under photoirradiation even with the near-infrared light (< 1:55 eV), whose energy is lower than the band gap of WO3. The reaction rate was varied with the fraction of W and WO3 on the surface layers, that is, the partially oxidized sample promoted the reaction at a higher rate than the fully oxidized one. It is also found that the reaction rate decreased with time, which would be caused by the products accumulation on the surface and the surface oxidation.
关键词: Scanning electron microscopy (SEM),Tungsten oxide,Surface photochemistry,Plasma processing,Nano-wires, quantum wires, and nanotubes,Visible/ultraviolet absorption spectroscopy, X-ray photoelectron spectroscopy
更新于2025-09-23 15:21:01
-
Computational Investigation of the Morphology, Efficiency, and Properties of Silver Nano Wires Networks in Transparent Conductive Film
摘要: Random networks of silver nano wires have been considered for use in transparent conductive films as an alternative to Indium Tin Oxide (ITO), which is unsuitable for flexible devices. However, the random distribution of nano wires makes such conductive films non-uniform. As electrical conductivity is achieved through a percolation process, understanding the scale-dependency of the macroscopic properties (like electrical conductivity) and the exact efficiency of the network (the proportion of nano wires that participate in electrical conduction) is essential for optimizing the design. In this paper, we propose a computational method for identifying the representative volume element (RVE) of nano wire networks. This defines the minimum pixel size in devices using such transparent electrodes. The RVE is used to compute the macroscopic properties of films and to quantify the electrically conducting efficiency of networks. Then, the sheet resistance and transparency of networks are calculated based on the predicted RVEs, in order to analyze the effects of nano wire networks on the electrical and optical properties of conductive films. The results presented in this paper provide insights that help optimizing random nano wire networks in transparent conductive films for achieving better efficiencies.
关键词: electrical conductivity,representative volume element,silver nano wires,optical transmittance,transparent conductive films
更新于2025-09-09 09:28:46