修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

707 条数据
?? 中文(中国)
  • Optimization and modeling of UV-TiO <sub/>2</sub> mediated photocatalytic degradation of golden yellow dye through response surface methodology

    摘要: In this article, heterogeneous photocatalysis of golden yellow (GY) dye by Evonik p25 titanium dioxide (PTD) and UV radiations was optimized by using central composite design of response surface methodology. The GY dye photocatalysis was expressed as the function of amount of PTD loading (X1), GY dye initial concentration (X2), and UV irradiance intensity (X3). The optimization of degradation conditions was done by measuring two different responses, that is, color removal (Y1) and chemical oxygen demand removal (Y2). The effect of X1, X2, and X3 were studied in the range 0.5–1.5 g/L, 15–35 W/m2, and 10–30 mg/L, respectively. The quadratic model was suggested for Y1 and Y2. The numerical optimization of results was done via Design Expert software. The predictive results obtained were verified by performing actual experiments. The photodegradation kinetics, total organic carbon disappearance, effect of inorganic salts, and H2O2 concentration on GY dye photodegradation were also studied.

    关键词: Titanium dioxide,Heterogeneous photocatalysis,Central composite design,Optimization,Golden yellow dye,Response surface methodology

    更新于2025-09-04 15:30:14

  • Green synthesis of g-C <sub/>3</sub> N <sub/>4</sub> -Pt catalyst and application to photocatalytic hydrogen evolution from water splitting

    摘要: The g-C3N4-Pt photocatalyst was successfully prepared by the combination of a biosynthesis method and sol deposition, which were used for hydrogen evolution from water splitting. The layers of g-C3N4 are thinned and the Pt nanoparticles simultaneously become tightly bound to g-C3N4 by secondary calcination in the process of synthesizing the g-C3N4-Pt photocatalyst. Analysis of the morphological structure and instrumental characterization of the optical performance revealed that the Pt nanoparticles were successfully loaded and well dispersed on the surface of g-C3N4. Furthermore, the absorption wavelength range of the g-C3N4-Pt photocatalyst in visible light was widened and the absorption increased. The activity and photostability of the g-C3N4-Pt photocatalyst for hydrogen evolution under visible light irradiation (λ≥420 nm) were excellent. The rate of H2 evolution reached 582.4 mmol h?1 g?1, and the quantum efficiency (QE) reached 2.70% at 420 nm.

    关键词: green synthesis,hydrogen evolution,visible-light photocatalysis,G-C3N4-Pt photocatalyst

    更新于2025-09-04 15:30:14

  • Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity

    摘要: Surface contamination by microbes is a major public health concern. A damp environment is one of potential sources for microbe proliferation. Smart photocatalytic coatings on building surfaces using semiconductors like titania (TiO2) can effectively curb this growing threat. Metal-doped titania in anatase phase has been proven as a promising candidate for energy and environmental applications. In this present work, the antimicrobial efficacy of copper (Cu)-doped TiO2 (Cu-TiO2) was evaluated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) under visible light irradiation. Doping of a minute fraction of Cu (0.5 mol %) in TiO2 was carried out via sol-gel technique. Cu-TiO2 further calcined at various temperatures (in the range of 500–700 ?C) to evaluate the thermal stability of TiO2 anatase phase. The physico-chemical properties of the samples were characterized through X-ray diffraction (XRD), Raman spectroscopy, X-ray photo-electron spectroscopy (XPS) and UV–visible spectroscopy techniques. XRD results revealed that the anatase phase of TiO2 was maintained well, up to 650 ?C, by the Cu dopant. UV–vis results suggested that the visible light absorption property of Cu-TiO2 was enhanced and the band gap is reduced to 2.8 eV. Density functional theory (DFT) studies emphasize the introduction of Cu+ and Cu2+ ions by replacing Ti4+ ions in the TiO2 lattice, creating oxygen vacancies. These further promoted the photocatalytic efficiency. A significantly high bacterial inactivation (99.9999%) was attained in 30 min of visible light irradiation by Cu-TiO2.

    关键词: Staphylococcus aureus,phase transition,antibacterial coatings,photocatalysis,doping,Cu-doped TiO2,Escherichia coli

    更新于2025-09-04 15:30:14

  • A Multifunctional Ag/TiO <sub/>2</sub> /Reduced Graphene Oxide with Optimal Surface-Enhanced Raman Scattering and Photocatalysis

    摘要: A multifunctional Ag/TiO2/reduced graphene oxide (rGO) ternary nanocomposite was prepared by a one-step photochemical reaction with TiO2 and Ag nanoparticles (NPs) successively deposited on reduced graphene oxide. The structure, morphology, composition, optical, and photoelectrochemical properties of Ag/TiO2/rGO were investigated in detail. Meanwhile, the ternary nanocomposite possessed much higher adsorption capacity to organic dyes compared with bare TiO2 and binary Ag/TiO2, which would help to its use for surface-enhanced Raman scattering (SERS) detection and photocatalytic degradation. Due to the charge transfer between rGO and organic dyes and enhanced electromagnetic mechanism (EM) of Ag, Ag/TiO2/rGO nanocomposites as surface-enhanced Raman scattering substrates demonstrated dramatically improved sensitivity and good uniformity. The detection limit of rhodamine 6G (R6G) was as low as 10-9 M, and the relative standard deviation (RSD) values of the intensities remained below 5 %. Most importantly, the synergistic coupling effect of three components extended the photoresponse range and accelerated separation of the electron-hole pairs, leading to greatly improved photocatalytic activity under simulated sunlight. The maximum rate constant (k, 0.06243 min?1) of Ag/TiO2/rGO was 50 and 4 times higher than that of TiO2 and Ag/TiO2, respectively.

    关键词: SERS property,Titanium oxide,adsorption,graphene oxide,photocatalysis

    更新于2025-09-04 15:30:14

  • Modification of the Optical and Electronic Properties of TiO2 By N Anion-Doping for Augmentation of the Visible Light Assisted Photocatalytic Performance

    摘要: In this work, a nitrogen-doped anatase TiO2 nanocrystal is prepared by a modified sol-gel preparation method using the nonionic surfactant (polyoxyethylene sorbitan monooleate) as a structural controller and a soft template. The as-prepared samples are characterized by X-ray diffraction, Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy techniques. Then the photocatalytic activity of these samples is assessed by the photocatalytic oxidation of phenol under visible light irradiation. The phenol concentration is measured using a UV-Vis spectrometer. Experimental results show that N-doping leads to an excellent visible light photocatalytic activity of the TiO2 nanocatalyst. Furthermore, the formation energy and electronic structure of pure and N-doped anatase TiO2 are described by density functional theory (DFT) calculations. It is found that N-doping narrowed the band gap of bare TiO2, which leads to an excellent visible light photocatalytic activity of N–TiO2 nanocatalysts. Therefore, the prepared N–TiO2 photocatalyst is expected to find the use in organic pollutant degradation under solar light illumination.

    关键词: nitrogen doping,DFT simulation,photocatalysis,titania

    更新于2025-09-04 15:30:14

  • Visible–light driven photocatalytic degradation of bisphenol-A using ultrasonically synthesized polypyrrole/K-birnessite nanohybrids: Experimental and DFT studies

    摘要: Although manganese oxides are known for their semiconductor characteristics, the photocatalytic performance of conducting polymer intercalated K-Birnessite (K-Bi) has not been explored till date. With the view to design a visible light driven organic–inorganic hybrid photocatalyst for rapid degradation of Bisphenol A (BPA), the present work reports the ultrasound-assisted green synthesis of K-Bi/polypyrrole (Ppy) nanohybrids. The loading of Ppy in K-Bi was confirmed by thermogravimetric analysis while the formation of organic–inorganic hybrid was confirmed by infrared spectroscopy. K-Bi revealed a band gap of 2.8 eV while for the nanohybrids it was found to be ranging between 2.4 and 1.6 eV. X-ray diffraction studies confirmed partial intercalation of Ppy chains in the inter-layer space of K-Bi. High resolution transmission electron microscopy and scanning electron microscopy studies showed mixed morphology of K-Birnessite/Ppy nanohybrids. Rapid degradation of BPA was observed under visible irradiation in presence of K-Bi/Ppy nanohybrids and almost 90% degradation of 20 mg/L BPA solution was achieved within 120 min. The degradation was found to follow pseudo-first order kinetics and the degraded fragments were identified using liquid chromatography-mass spectrometry. Degradation pathway was proposed based on density-functional theory calculations of fukui index predicting the radical easy-attacking (f0) and (f-) sites in BPA.

    关键词: DFT calculations,Degradation kinetics,Photocatalysis,Manganese oxide,Polypyrrole

    更新于2025-09-04 15:30:14

  • Rational design of yolk–shell nanostructures for photocatalysis

    摘要: Photocatalysis is a promising route to convert solar energy into chemical energy directly, providing an alternative solution to environment and natural resource problems. Theoretically, all photocatalytic reactions are driven by charge carriers whose behavior can be divided into charge generation, separation, migration and surface reactions. Efficiencies of charge utilization in every step determine the overall performance of photocatalysis. Yolk–shell (YS) structures can provide an ideal platform for the efficient utilization of charge carriers. Typically, a YS structure is constructed from a hollow shell and an inner core, which can enhance light scattering in the hollow space and provide a large surface to create sufficient active sites, both of which can significantly improve the efficacy of charge utilization. Additionally, many strategies can be adopted to modify the YS structure for further enhancement of charge behaviors in every step. Existing reviews about YS structures mainly concentrate on the universality of the application of YSs, while the strategies to improve photocatalytic performance based on YSs have not been elaborately illustrated. This review describes the classification, synthesis, formation mechanism of YS structures and the rational regulation of the behaviors of photogenerated charge carriers, aiming at their effective utilization based on YS structures in heterogeneous photocatalytic reactions.

    关键词: Charge carriers,Heterogeneous photocatalytic reactions,Solar energy conversion,Yolk–shell structures,Photocatalysis

    更新于2025-09-04 15:30:14