- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Photonics of tetramethoxy-1,4-distyrylbenzene
摘要: Photonics of tetramethoxy-1,4-distyrylbenzene in MeCN was studied by absorption, luminescence, and laser kinetic spectroscopies. Photoinduced transformations of the compound in question involve cis—trans-isomerization, intersystem crossing, fast and delayed fluorescence, and electron transfer. The ground-state structure and vibrational spectrum, as well as the energies and structures of excited singlet and triplet states were calculated by the DFT/PBE and TDDFT/PBE0 methods. The assignment of vibronic bands in the absorption spectra was made and the energies of corresponding transitions were calculated.
关键词: triplet state,trans—cis-photoisomerization,electron transfer,delayed fluorescence
更新于2025-09-23 15:23:52
-
Photoresponsive Circular Supramolecular Polymers: Topological Trap and Photoinduced Ring-opening Elongation
摘要: Topological features of one-dimensional macromolecular chains govern the properties and functionality of natural and synthetic polymers. To address this issue in supramolecular polymers, we have synthesized two topologically distinct supramolecular polymers with intrinsic curvature, i.e., circular and helically folded nanofibers, from azobenzene-functionalized supramolecular rosettes. When a mixture of circular and helically folded nanofibers was exposed to UV light, a selective unfolding of the latter open-ended supramolecular polymers was observed as a result of the curvature-impairing internal force produced by the trans-to-cis photoisomerization of the azobenzene. This distinct sensitivity suggests that the topological features of supramolecular polymers define their mechanical stability. Furthermore, the exposure of circular supramolecular polymers in more polar media to UV irradiation resulted in a ring-opening followed by a chain elongation, demonstrating that the circular supramolecular polymer can work as a topological kinetic trap.
关键词: topology,ring opening,azobenzene,supramolecular polymer,photoisomerization
更新于2025-09-23 15:23:52
-
Does the wavelength dependent photoisomerization process of the p?coumaric acid come out from the electronic state dependent pathways?
摘要: Similar to the anion photoactive yellow protein (PYP) chromophore, the neutral form of the PYP chromophore was also found to exhibit a the wavelength-dependent photoisomerization quantum yield. The isomerization quantum yield increases with the increasing excitation energy on the S1 state, while decreases when being excited to the S2 state. Does this wavelength dependent product yield come out from the specific reaction pathways of the S1 and S2 states? This would mean that, the relaxation pathway of the S2 state is distinct from that of the S1 state and does not involve twisting motion. Does it break Kasha's rule by exhibiting a direct transition from the S2 state to the ground state? The underlying mechanism needs further in. In this article, we employed the on-the-fly dynamics simulations and static electronic structure calculations to reveal the deactivation mechanism of the neutral form of the PYP chromophore. Our results indicated that the C_C twisting motion dominates the S1 state decay process. In contrast, for the decay process of the S2 state, an ultrafast transition from the S2 to the S1 state through a planar conical intersection is observed, and the excess energy activates a new reaction channel to the ground state characterized by a puckering distortion of the ring. This pathway competes with the photoisomerization channel. No direct transition from S2 to S0 is observed, hence Kasha's rule is valid for this process. Our calcualtions can provide a reasonable explanation of the wavelength-dependent isomerization quantum yield of neutral PYP chromophore, and we hope it can provide theoretical foundations for comparing the effect of protonation state on the dynamcal behaviors of PYP chromophore.
关键词: Wavelength dependent,Photoisomerization,Fluorescent protein,Nonadiabatic process
更新于2025-09-23 15:23:52
-
Analysis of trajectory similarity and configuration similarity in on-the-fly surface-hopping simulation on multi-channel nonadiabatic photoisomerization dynamics
摘要: We propose an “automatic” approach to analyze the results of the on-the-fly trajectory surface hopping simulation on the multi-channel nonadiabatic photoisomerization dynamics by considering the trajectory similarity and the configuration similarity. We choose a representative system phytochromobilin (PΦB) chromophore model to illustrate the analysis protocol. After a large number of trajectories are obtained, it is possible to define the similarity of different trajectories by the Fréchet distance and to employ the trajectory clustering analysis to divide all trajectories into several clusters. Each cluster in principle represents a photoinduced isomerization reaction channel. This idea provides an effective approach to understand the branching ratio of the multi-channel photoisomerization dynamics. For each cluster, the dimensionality reduction is employed to understand the configuration similarity in the trajectory propagation, which provides the understanding of the major geometry evolution features in each reaction channel. The results show that this analysis protocol not only assigns all trajectories into different photoisomerization reaction channels but also extracts the major molecular motion without the requirement of the pre-known knowledge of the active photoisomerization site. As a side product of this analysis tool, it is also easy to find the so-called “typical” or “representative” trajectory for each reaction channel.
关键词: trajectory similarity,multi-channel nonadiabatic photoisomerization dynamics,Fréchet distance,dimensionality reduction,phytochromobilin chromophore,on-the-fly surface-hopping simulation,configuration similarity,clustering analysis
更新于2025-09-23 15:23:52
-
Control on Dimensions and Supramolecular Chirality of Self-Assemblies through Light and Metal Ions
摘要: Precise control over helical chirality and dimensions of molecular self-assemblies, a remaining challenge for both chemists and materials scientists, is the key to manipulate the property and performance of supramolecular materials. Herein, we report that a cholesterol-azopyridine conjugate could self-assemble into organogels with photo-controllable dimensional transition from 2D microbelts to 1D nanotubes and finally to 0D nanoparticles. The E/Z-Photoisomerization of the 4-azopyridine unit is the major driving force for the dimensional transformation. Furthermore, the self-assembled structures were observed to exhibit metal ion-mediated helicity inversion through the metal coordination. These observations were collectively confirmed by several techniques including scanning electron microscopy, atomic force microscope, circular dichroism, and X-ray crystallography. The rational design of building blocks for the construction of dimension and chirality controllable self-assembly systems may lead to versatile applications in smart display, advanced optoelectronic device, and supramolecular asymmetric catalysis.
关键词: photoisomerization,dimensional transition,supramolecular chirality,metal coordination,self-assembly
更新于2025-09-23 15:21:21
-
NEXMD Modeling of Photoisomerization Dynamics of 4-Styrylquinoline
摘要: Isomerization of molecular systems is ubiquitous in chemistry and biology, and is also important for many applications. Atomistic simulations can help determine the tunable parameters influencing this process. In this paper, we use the Nonadiabatic EXcited-state Molecular Dynamics (NEXMD) software to study the photoisomerization of a representative molecule, 4-styrylquinoline (SQ). Trans-SQ transforms into dihydrobenzophenanthridine (DHBP) upon irradiation with laser light, with the cis conformer acting as an intermediate. We study how varying three different external stimuli (i.e., apolar versus polar solvent, low versus high photoexcitation energy, and vacuum versus a constant temperature thermostat) affects the trans-to-cis photoisomerization of SQ. Our results show that polarization effects due to implicit solvation and the thermostat play a crucial role in the isomerization process, whereas photoexcitation energy plays a lesser role on the outcome and efficiency. We also show that NEXMD captures the correct energy profile between the ground and first singlet excited state, showing that there are two distinct reaction pathways to the final stable product that vary by the number of photons absorbed, in agreement with experiment. Ultimately, NEXMD proves to be an effective tool for investigating excited state single molecule dynamics subject to various environments and initial conditions.
关键词: Isomerization,Molecular Dynamics,NEXMD,4-styrylquinoline,Photoisomerization
更新于2025-09-23 15:21:21
-
Unlocking a diazirine long-lived nuclear singlet state via photochemistry: NMR detection and lifetime of an unstabilized diazo-compound
摘要: Diazirines are important for photoaffinity labelling and their photoisomerization is relatively well known. This work shows how hyperpolarized NMR spectroscopy can be used to characterise an unstable diazo-compound formed via photoisomerization of a 15N2-labelled silyl-ether substituted diazirine. This diazirine is prepared in a nuclear spin singlet state via catalytic transfer of spin order from para-hydrogen. The active hyperpolarization catalyst is characterised to provide insight into the mechanism. The photochemical isomerisation of the diazirine into the diazo-analogue allows the NMR invisible nuclear singlet state of the parent compound to be probed. The identity of the diazo-species is confirmed by trapping with N-phenyl maleimide via a cycloaddition reaction to afford bicyclic pyrazolines that also show singlet state character. The presence of singlet states in the diazirine and the diazo-compound are validated by comparison of experimental nutation behaviour with theoretical simulation. The magnetic state lifetime of the diazo-compound is determined as 12 ± 1 s in CD3OD solution at room temperature whereas its chemical lifetime is measured as 100 ± 5 s by related hyperpolarized NMR studies. Indirect evidence for the generation of the photoproduct para-N2 is presented.
关键词: SABRE-SHEATH,photochemistry,para-hydrogen,diazirine,photoisomerization,nuclear spin singlet state,diazo-compound,hyperpolarized NMR spectroscopy
更新于2025-09-23 15:21:21
-
Tenfold increase in the photostability of an azobenzene guest in vapor-deposited glass mixtures
摘要: Improvements to the photostability of organic glasses for use in electronic applications have generally relied on the modification of the chemical structure. We show here that the photostability of a guest molecule can also be significantly improved—without chemical modification—by using physical vapor deposition to pack molecules more densely. Photoisomerization of the substituted azobenzene, 4,4'-diphenyl azobenzene, was studied in a vapor-deposited glass matrix of celecoxib. We directly measure photoisomerization of trans- to cis-states via Ultraviolet-visible (UV-Vis) spectroscopy and show that the rate of photoisomerization depends upon the substrate temperature used during co-deposition of the glass. Photostability correlates reasonably with the density of the glass, where the optimum glass is about tenfold more photostable than the liquid-cooled glass. Molecular simulations, which mimic photoisomerization, also demonstrate that photoreaction of a guest molecule can be suppressed in vapor-deposited glasses. From the simulations, we estimate that the region that is disrupted by a single photoisomerization event encompasses approximately 5 molecules.
关键词: photostability,organic glasses,azobenzene,photoisomerization,physical vapor deposition,molecular simulations,UV-Vis spectroscopy
更新于2025-09-23 15:21:21
-
Synthesis, Photophysics, and Switchable Luminescence Properties of a New Class of Ruthenium(II)–Terpyridine Complexes Containing Photoisomerizable Styrylbenzene Units
摘要: We report here the synthesis and structural characterization of a new class of homoleptic terpyridine complexes of Ru(II) containing styrylbenzene moieties to improve room-temperature luminescence properties. Solid-state structure determination of 2 was done through single-crystal X-ray diffraction. Tuning of photophysical properties was done by incorporating both electron-donating and electron-withdrawing substituents in the ligand. The complexes exhibit strong emission having lifetimes in the range of 10.0?158.5 ns, dependent on the substituent and the solvent. Good correlations were also observed between Hammett σ p parameters with the lifetimes of the complexes. Styrylbenzene moieties in the complexes induce trans?trans to trans?cis isomerization accompanied by huge alteration of their spectral profiles upon treating with UV light. Reversal of trans?cis to trans?trans forms was also achieved on interacting with visible light. Change from trans?trans to the corresponding trans?cis form leads to emission quenching, whereas trans?cis to the corresponding trans?trans form leads to restoration of emission. In essence, “on?off” and “off?on” photoswitching of luminescence was observed. Calculations involving density functional theory (DFT) and time-dependent-DFT methods were performed to understand the electronic structures as well as for appropriate assignment of the absorption and emission bands.
关键词: Ruthenium(II)?Terpyridine Complexes,Photophysics,Switchable Luminescence,Styrylbenzene Units,Photoisomerization
更新于2025-09-23 15:21:01
-
Synthesis and photochromic properties of some N-phthalimide azo-azomethine dyes. A DFT quantum mechanical calculations on imine-enamine tautomerism and trans-cis photoisomerization
摘要: This paper presents synthesis, photophysical characterization and quantum mechanical calculations of some N-phthalimide azo-azomethine dyes. The dyes were synthesized via azo coupling reaction between 2,4-substituted aromatic anilines and salicylic aldehyde followed by condensation reactions between azo dyes and N-aminophtalimide. Quantum chemical calculations to optimise the molecular geometry and to determine the electron densities of the trans (E) imine ? enamine and the cis (Z) imine ? enamine isomers and their vibrational frequencies have been computed by using DFT at B3LYP/6–31 + G(d,p) level of theory in vacuo. The effect of the used DMF solvent on the molecular structure and bond energies has been determined by using the IEFPCM model. Thermodynamic parameters such as total electronic energy E(RB3LYP), enthalpy H298 (sum of electronic and thermal enthalpies), free Gibbs energy G298 (sum of electronic and thermal free Gibbs energies) and dipole moment μ were computed in order to estimate the ΔE, Δμ, ΔH, ΔG and ΔS values. The NBO analysis was performed in order to understand the intramolecular charge transfer and the energy of resonance stabilization. After molecular geometry optimization, the electronic spectra were obtained by TD-DFT calculations at the above mentioned basis set using the IEFPCM model of DMF as a solvent. The solvatochromic effect of the dyes in four solvents with different polarity has been studied by UV–VIS spectroscopy and compared with the theoretically predicted. The coincidence between measured and calculated spectra is satisfactory. The dynamic photoisomerization experiments were performed in DMF under irradiation with UV light at λ = 365 nm (mostly E → Z) and with VIS light at λ = 400–800 nm (mostly Z → E). The spectra were recorded in the spectral region from 300 to 800 nm at identical sample concentrations of the three dyes and illumination times in order to investigate the photodynamical E → Z → E conversion of the\N_N\chromophore group of the dyes as well as the imine ? enamine tautomerization.
关键词: Tautomerism,DFT calculations,Schiff bases,Azo-azomethine dyes,Photochromism,Trans-cis photoisomerization
更新于2025-09-23 15:21:01