- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 Innovations in Power and Advanced Computing Technologies (i-PACT) - Vellore, India (2019.3.22-2019.3.23)] 2019 Innovations in Power and Advanced Computing Technologies (i-PACT) - Numerical modeling and Simulation of Thermophotovoltaic Cell using COMSOL
摘要: In recent years, Thermophotovoltaics (TPV) have become a hot and essential research area due to the increase in requirement of electrical energy at global level as well as the scarcity on other fossil fuels. TPV is a technology which uses the application of photovoltaic diodes for generating electricity from thermal radiation. This process is generally achieved by using thermal emitters that are heated to a temperature greater than 800o C. In this work, we have designed a circular TPV cell using Silicon Carbide as an emitter and Gallium Antimonide as solar PV cells. The emitter is operated at a heat varying from 1000 K to 2000 K using parametric solver at a regular interval of 100 K. We have analyzed how the heat transfers with surface to surface radiation at a stationary condition. The temperature distribution and electrical power output of TPV cell is also observed. It is observed that the proposed TPV cell produces a maximum of 27000 W/m2 electrical power output at an emitter temperature of 1700 K and solar temperature of 1300 K.
关键词: Solar cell,Electrical energy,Thermophotovoltaic cell,Photovoltaic cell,Heat transfer,Renewable energy
更新于2025-09-16 10:30:52
-
[IEEE 2019 18th International Conference on Optical Communications and Networks (ICOCN) - Huangshan, China (2019.8.5-2019.8.8)] 2019 18th International Conference on Optical Communications and Networks (ICOCN) - Efficient and Range-Variable Laser Wireless Charging Technology
摘要: The conversion efficiency of photovoltaic cells, charging distance and tracking technology are three important indicators of laser wireless charging technology. This paper demonstrates an efficient laser wireless charging scheme with variable charging distance and a simple tracking system. The laser wireless charging system proposed in this paper is mainly composed of 808nm laser, zoom beam expander, GaAs photovoltaic cell and the energy management module. By increasing the uniformity of laser spot energy distribution, the conversion efficiency of GaAs photovoltaic cells reaches 35.3%. Reduce system cost by simplifying the tracking system. Using zoom beam expander, the charging distance ranges from 10 to 50 meters.
关键词: GaAs photovoltaic cell,Zoom beam expander,Tracking system,Laser wireless charging
更新于2025-09-16 10:30:52
-
Multi-bandgap Solar Energy Conversion via Combination of Microalgal Photosynthesis and Spectrally Selective Photovoltaic Cell
摘要: Microalgal photosynthesis is a promising solar energy conversion process to produce high concentration biomass, which can be utilized in the various fields including bioenergy, food resources, and medicine. In this research, we study the optical design rule for microalgal cultivation systems, to efficiently utilize the solar energy and improve the photosynthesis efficiency. First, an organic luminescent dye of 3,6-Bis(4′-(diphenylamino)-1,1′-biphenyl-4-yl)-2,5-dihexyl-2,5-dihydropyrrolo3,4-c pyrrole -1,4-dione (D1) was coated on a photobioreactor (PBR) for microalgal cultivation. Unlike previous reports, there was no enhancement in the biomass productivities under artificial solar illuminations of 0.2 and 0.6 sun. We analyze the limitations and future design principles of the PBRs using photoluminescence under strong illumination. Second, as a multiple-bandgaps-scheme to maximize the conversion efficiency of solar energy, we propose a dual-energy generator that combines microalgal cultivation with spectrally selective photovoltaic cells (PVs). In the proposed system, the blue and green photons, of which high energy is not efficiently utilized in photosynthesis, are absorbed by a large-bandgap PV, generating electricity with a high open-circuit voltage (Voc) in reward for narrowing the absorption spectrum. Then, the unabsorbed red photons are guided into PBR and utilized for photosynthesis with high efficiency. Under an illumination of 7.2 kWh m?2 d?1, we experimentally verified that our dual-energy generator with C60-based PV can simultaneously produce 20.3 g m?2 d?1 of biomass and 220 Wh m?2 d?1 of electricity by utilizing multiple bandgaps in a single system.
关键词: Photobioreactor,Spectrally selective photovoltaic cell,Solar energy conversion,Dual-energy generator,Microalgal photosynthesis
更新于2025-09-12 10:27:22
-
AIP Conference Proceedings [AIP Publishing PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019 - Kerala, India (12–14 June 2019)] PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS: ICAM 2019 - Measurement of hole mobility in P3HT based photovoltaic cell using space charge limited current method
摘要: Mobility of carriers is one of the pivotal parameters characterizing any semiconducting material and it is important for organic semiconductors too. The mobility of organic semiconductors remains far less when compared to inorganic counterparts and hence attempts in the direction improvise it carries tremendous significance. This paper investigates the positive charge carriers transport properties in a bulk heterojunction organic photovoltaic cell using two different Anode Buffer Layers (PEDOT:PSS and MoO3). The method of Space Charge Limited Current (SCLC) is used to compute the hole mobilities and also the values are compared. The values obtained with PEDOT:PSS and MoO3 as HTLs are 1.043x10-4 cm2 V-1S-1 and 1.357x10-4 cm2V-1S-1 respectively. It is seen that the device with higher carrier mobility exhibits better performance.
关键词: PEDOT:PSS,hole mobility,space charge limited current,MoO3,photovoltaic cell,P3HT
更新于2025-09-12 10:27:22
-
Optimization and maximum efficiency of concentrating photovoltaic cell‐gas turbine system with spectrum splitting
摘要: The spectrum splitting system (SSS) is an efficient approach to relieve the energy losses in the solar cell and boost the efficiency of solar energy utilization. A model of the concentrated solar spectrum splitting photovoltaic (PV) cell-gas turbine (GT) hybrid system is established to evaluate the performance of the system and predict the maximum efficiency. The numerical calculations show that the area ratio of the solar collector to the PV cell significantly affects the maximum efficiency of the spectrum system, but most of the previous studies are not considered. The maximum efficiency of the system is 50.6% when the parameters including the cell voltage, collector temperature, and band gap energy of the PV cell are optimized at the same areas of the collector and PV cell. The proposed SSS can achieve the maximum efficiency of 52.3% when the area ratio of the collector to the PV cell is further optimized. The results obtained are compared with those of a single concentrating PV cell or solar-powered GT, and consequently, the advantages of a concentrating spectrum splitting PV cell-GT hybrid system are revealed.
关键词: maximum efficiency,optimization,solar spectrum splitting,gas turbine,photovoltaic cell
更新于2025-09-12 10:27:22
-
Hybrid Solar Cells with a Sunlight Concentrator System
摘要: Hybrid solar cells based on InGaP/Ga(In)As/Ge multijunction structures integrated into crystalline Si heat-removal base and provided with sunlight concentrator system based on linear Fresnel lenses and carboplastic mount structure have been developed and investigated. The hybrid solar cells with sunlight concentrators in the photovoltaic module provide a specific electric power of 390 W/m2 (AM0, 1367 W/m2) at a photoconverter unit specific weight reduced to 1.0 kg/m2. Improved photovoltaic characteristics and high radiation resistance allow using the proposed hybrid solar modules with sunlight concentrators in space solar batteries and autonomous power supply facilities.
关键词: linear Fresnel lens,concentrator photovoltaic module,hybrid solar cell,multijunction photovoltaic cell,solar battery
更新于2025-09-11 14:15:04
-
Improved Charge Pump Design and $Ex\ Vivo$ Experimental Validation of CMOS 256-Pixel Photovoltaic-Powered Subretinal Prosthetic Chip
摘要: An improved design of a 256-pixel photovoltaic-powered implantable chip for subretinal prostheses is presented. In the proposed subretinal chip, a high-efficiency fully-integrated 4× charge pump is designed and integrated with on-chip photovoltaic (PV) cells and a 256-pixel array with active pixel sensors (APS) for image light sensing, biphasic constant current stimulators, and electrodes. Thus the PV voltage generated by infrared (IR) light can be boosted to above 1V so that the charge injection is increased. The proposed chip adopts the 32-phase divisional power supply scheme (DPSS) to reduce the required supply current and thus the required area of the PV cells. The proposed chip is designed and fabricated in 180-nm CMOS technology and post-processed with image sensor biocompatible IrOx electrodes and silicone packaging. From the electrical measurement results, the measured stimulation frequency is 28.3 Hz under the equivalent electrode impedance load. The measured maximum output stimulation current is 7.1 μA and the amount of injected charges per pixel is 7.36 nC under image light intensity of 3200 lux and IR light intensity of 100 mW/cm2. The function of the proposed chip has been further validated successfully with the ex vivo experimental results by recording the electrophysiological responses of retinal ganglion cells (RGCs) of retinas from retinal degeneration (rd1) mice with a multi-electrode array (MEA). The measured average threshold injected charge is about 3.97 nC which is consistent with that obtained from the patch clamp recording on retinas from wild type (C57BL/6) mice with a single electrode pair.
关键词: biocompatible package,divisional power supply scheme,multi-electrode array,charge pump,photovoltaic cell
更新于2025-09-11 14:15:04
-
A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module
摘要: In order to carry out the evaluation, control and maximum power point tracking on photovoltaic (PV) systems, accurate and reliable model parameter identification of PV cell and module is always desired. In this study, a performance-guided JAYA (PGJAYA) algorithm is proposed for extracting parameters of different PV models. In proposed PGJAYA algorithm, the individual performance in the whole population is quantified through probability. Then, based on probability, each individual can self-adaptively select different evolution strategies designed for balancing exploration and exploitation abilities to conduct the searching process. Meanwhile, the quantified performance is employed to select the exemplar to construct the promising searching direction. In addition, a self-adaptive chaotic perturbation mechanism is introduced around the current best solution to explore more better solution for replacing the worst one, thus improving the quality of whole population. The parameters estimation performance of PGJAYA is evaluated through three widely used standard datasets of different PV models including single diode, double diode, and PV module. Comparative and statistical results demonstrate that PGJAYA has a superior performance as it always obtains the most accurate parameters with strong robustness among all compared algorithms. Furthermore, the tests based on experimental data from the data sheet of different types of PV modules suggest that the proposed algorithm can achieve superior results at different irradiance and temperature. Based on these superiorities, it is concluded that PGJAYA is a promising parameter identification method for PV cell and module model.
关键词: JAYA algorithm,Optimization,Photovoltaic cell and module,Parameters identification
更新于2025-09-11 14:15:04
-
Intelligent classification of silicon photovoltaic cell defects based on eddy current thermography and convolution neural network
摘要: Defects the production process of silicon photovoltaic (Si-PV) cells are urgently needed to be detected due to their serious impact on the normal generation of PV system. In view of the shortcomings such as low defect efficiency, few detection data and high detection error rate in the existing industrial production line, the main research purpose of this study is to complete an intelligent classification method for efficient and innovative defect detection for Si-PV cells and modules. The purpose is to improve the detection efficiency of Si-PV cell, to ensure the safety and reliability of Si-PV cell production process, to achieve large number of Si-PV cell defects detection and classification. Firstly, the Eddy Current Thermography (ECT) system of Si-PV cells was established. Secondly, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) algorithms are compared for thermography sequences processing. Thirdly, LeNet-5, VGG-16 and GoogleNet models are compared for Si-PV cell defects classification. Finally, the results showed that the proposed method have successful application in Si-PV cell defects detection and classification.
关键词: Nondestructive testing & evaluation,Defect feature extraction,Defect classification,Convolution neural network,Silicon photovoltaic cell,Eddy current thermography
更新于2025-09-11 14:15:04
-
Non-Fullerene Small Molecule Acceptors Containing Barbituric Acid End Groups for Use in High-performance OPVs
摘要: We synthesized two new bithiophene-based small molecules, TT-BBAR, and TT-OBAR, having butyl- and octyl-substituted barbituric acid (BAR) groups, respectively, via a well-known synthetic method, the Knoevenagel condensation, in high yield. These small molecules displayed solubilities and thermal stabilities sufficient for the fabricating organic photovoltaic cells (OPVs) and were designed to have relatively low molecular orbital energy levels and act as non-fullerene acceptors (NFAs) for use in OPVs upon introduction of electron-withdrawing BAR groups at both ends. For example, the LUMO and HOMO energy levels of TT-OBAR were ?3.79 and of ?5.84 eV, respectively, clearly lower than those of a polymer donor, PTB7-Th. Importantly, the small molecules featured an energy offset with PTB7-Th sufficient for achieving exciton dissociation. The optical and electrochemical properties of TT-BBAR and TT-OBAR did not depend on the alkyl chain length. Finally, OPV devices were fabricated in an inverted structure using a solvent process. The power conversion efficiency of TT-OBAR (1.34%) was found to be slightly higher than that of TT-BBAR (1.16%). The better performance and higher short-circuit current value of TT-OBAR could be explained based on a morphological AFM study, in which TT-OBAR displayed a more homogeneous morphology with a root-mean-square value of 1.18 nm compared to the morphology of TT-BBAR (11.7 nm) induced by increased alkyl chain length.
关键词: Barbituric acid,Organic photovoltaics,Organic photovoltaic cell,Non-fullerene acceptor
更新于2025-09-10 09:29:36