- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Lewis acid activated CO <sub/>2</sub> reduction over a Ni modified Ni–Ge hydroxide driven by visible-infrared light
摘要: Improvement of light harvesting and reaction kinetics is of great importance for achieving efficient solar-driven CO2 reduction. Here, a Ni modified low-crystalline Ni–Ge containing hydroxide with Lewis acid sites was synthesized in highly reductive NaBH4 solution and exhibited 9.3 μmol gcat.?1 h?1 CO and 3.5 μmol gcat.?1 h?1 CH4 generation rates under visible light irradiation, and even achieved a 3.8 μmol gcat.?1 h?1 CO evolution under infrared light irradiation. The wide-spectrum light harvesting resulted from the light absorption from the localized surface plasmonic resonance of Ni nanoparticles. In addition, the Lewis acid can activate CvO bonds to decrease the kinetic barriers of CO2 reduction. The design concept that rationally combines the advantages of expanding the spectral response and activating CO2 may offer a new strategy for efficient solar energy utilization.
关键词: visible-infrared light,plasmonic effect,Lewis acid,CO2 reduction,photocatalyst
更新于2025-11-19 16:51:07
-
Plasmonic MoO2 nanospheres assembled on graphene oxide for highly sensitive SERS detection of organic pollutants
摘要: The molybdenum oxide and graphene oxide (MoO2/GO) nanocomposite has been fabricated via simple hydrothermal assisted synthesis using Mo and MoO3 as precursors. The MoO2 nanospheres with porous hollow structure are assembled onto GO nanosheets. Profiting from the plasmonic effects of MoO2 and synergistic effect of MoO2 and GO, this hybrid nanomaterial exhibits significantly enhanced surface enhanced Raman scattering (SERS) activity for organic pollutants. The detection limit for rhodamine 6G (R6G) is 1.0 × 10?9 M, and the maximum enhancement factor (EF) reaches up to 1.05 × 107, which is the best among the semiconductor-based SERS materials. For practical application, the MoO2/GO SERS substrates are also applied to detect Methylene blue (MB) in river water, and the detection limit (1.0 × 10?8 M) can be acquired. Pyrene is also chosen as probe molecule, and quantitative determination is achieved with detection limit of 1.0 × 10?7 M. These demonstrate the well feasibility for multi-molecule detection. Furthermore, the nanocomposite displays high stability, reproducible stability, and acid and alkali resistance.
关键词: Organic pollutants,Plasmonic effect,SERS,Graphene oxide,Detection,MoO2
更新于2025-11-14 15:27:09
-
Au@Ag@Ag2S heterogeneous plasmonic nanorods for enhanced dye-sensitized solar cell performance
摘要: Au@Ag@Ag2S heterogeneous nanorods (NRs) with two strong plasmonic absorptive bands were developed for boosting the performance of dye-sensitized solar cells, and the remarkably enhanced plasmonic devices were achieved. By doping different concentrations of the Au@Ag@Ag2S NRs within the TiO2 photoanode layers, various enhanced effects of the plasmonic devices were obtained. With the incorporation of the typical Au@Ag@Ag2S NRs (their aspect ratios: 2.7) into the TiO2 photoanodes, the top efficiency of 6.51% of the fabricated plasmonic photovoltaic devices at their doped concentrations of the 2.31% was observed, exhibiting dramatic 40% enhancement than that of the conventional dye-sensitized solar cells (bare device: 4.65%). Benefiting from effective surface plasmon effects of the Au@Ag@Ag2S NRs, the light-harvesting abilities of photoanodes and dyes in devices are dramatically enhanced, which in return boost the whole performance of photovoltaic devices significantly.
关键词: Dye-sensitized solar cell,Nanorod,Power conversion efficiency,Plasmonic effect
更新于2025-11-14 15:27:09
-
Enhancing the organic solar cell efficiency by combining plasmonic and F?rster Resonance Energy Transfer (FRET) effects
摘要: Here, we combine two strategies i.e., F€orster resonance energy transfer and plasmonic effect, to enhance the photovoltaic performance in organic solar cells by introducing gold nanoparticles and squaraine in a binary mixture of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester. In this configuration, the F€orster resonance energy transfer between poly(3-hexylthiophene) and squaraine reduces the electrical loss arising from the exciton recombination in poly(3-hexylthiophene), while gold nanoparticles enable an efficient charge carrier generation in poly(3-hexylthiophene):squaraine mixture as optically confirmed by photoluminescence measurement and transient absorption spectroscopy. The multicomponent organic solar cells demonstrate an enhancement of ~36% in power conversion efficiency over the reference device.
关键词: Organic solar cells,Plasmonic effect,Squaraine,Gold nanoparticles,F€orster resonance energy transfer
更新于2025-09-19 17:13:59
-
Phthalocyanine-silver nanoparticle structures for plasmon-enhanced dye-sensitized solar cells
摘要: The localized surface plasmon resonance of silver nanoparticles (Ag NPs) was examined to improve the performance of phthalocyanine (MTXPc) in the plasmon-enhanced phthalocyanine-sensitized solar cells. When MTXPc dyes directly conjugated to Ag NPs (MTXPc-AgNPs) were used to sensitize solar cells, both of short-circuit current density (JSC) and open-circuit voltage (VOC) of phthalocyanine-sensitized solar cells were significantly increased. In the case of MTXPc conjugated to Ag@ZIF-8 (MTXPc-Ag@ZIF-8), slightly increasing in the JSC compared to alone MTXPc are observable but their VOC are significantly greater than alone MTXPc. Increasing in the JSC and VOC of the MTXPc-AgNPs and MTXPc-Ag@ZIF-8 lead to improve the performance of phthalocyanine in plasmon-enhanced phthalocyanine-sensitized solar cells compared to alone MTXPc. Also, the examination of the effect of the carboxyl- and sulfonyl-anchored dye (ZnTCPc-AgNPs and ZnTSPc-AgNPs, respectively) in conjunction with plasmonic NPs on the performance of DSSCs showed that ZnTCPc-AgNPs and ZnTSPc-AgNPs perform significantly better than their unsubstituted analogues. The studying the effect of the metal in the central cavity of phthalocyanine using zinc, manganese, iron, cobalt, and nickel showed that the metal in the central cavity of phthalocyanine has the critical role toward the photovoltaic performance of the plasmon-enhanced phthalocyanine-sensitized solar cells.
关键词: Plasmonic effect,Phthalocyanine,Dye-sensitized solar cells,Silver nanoparticle
更新于2025-09-19 17:13:59
-
High-performance blue perovskite light-emitting diodes based on the a??far-field plasmonic effecta?? of gold nanoparticles
摘要: Metal halide perovskites have become the next-generation electroluminescent materials due to their excellent optoelectronic properties. In the last several years, there has been tremendous progress in the performance of red and green-light perovskite electroluminescent devices (PeLEDs) with external quantum efficiencies (EQE) exceeding 14% and 21%, respectively. In contrast, blue PeLEDs are still in infancy stage, due to EQEs below 1%. Therefore, development of blue PeLEDs is sorely needed since blue light plays a vital role in achieving full-color and white-light emission. In order to improve the efficiency of blue PeLEDs, herein we introduce gold nanoparticles (Au NPs) into poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layer (HTL) to achieve a high performance blue PeLEDs with an emission wavelength ~475 nm. By introducing Au NPs, the optical properties of poly(ethylene oxide) (PEO):PEA2(CsPbBrxCl3?x)n?1PbBr4 perovskite films have been significantly improved leading to 3.8 times enhancement in fluorescence intensity. Based on this improvement, the blue PeLEDs record a maximum luminance and EQE of ~1110 cd/m2 and 1.64%, respectively performing among the best reported so far. Finally, the PeLED performance improvement is attributed to the far-field surface plasmonic effect of Au NPs. This effect is originated from the interference between the original chromophores emission and the mirror-reflected emission of mirror-type substrates. This study not only reveals the function of Au NPs in development of blue PeLEDs, but also offers new insights into the fundamental physics underlying the effect of surface plasmon resonance of Au NPs on perovskite light emitting devices.
关键词: gold nanoparticles,blue PeLEDs,Metal halide perovskites,far-field plasmonic effect,external quantum efficiency
更新于2025-09-19 17:13:59
-
Neuron-like cell differentiation of hADSCs promoted by a copper sulfide nanostructure mediated plasmonic effect driven by near-infrared light
摘要: Nerve is one of the most difficult tissues to repair due to the limited source of neural stem cells and the difficulty to promote the neural differentiation of mesenchymal stem cells by growth factors. Electromagnetic field has been proved to have the ability to regulate stem cells differentiation. Although some researches promoted neural differentiation of stem cells by external power source, it is still a big challenge to realize the nerve repair in bodies because of the unwieldiness and complexity of the power supply equipment. Surface plasmon (SP) is electromagnetic oscillation caused by the interaction of free electrons and photons on metal surface, and almost no one has used this localized electromagnetic oscillation to regulate stem cells differentiation. In this study, based on the concept proposed by our group that “Regulation of stem cell fate by nanostructure mediated physical signal”, the localized electromagnetic oscillation generated by the localized surface plasmon resonance (LSPR) of copper sulfide (CuS) nanostructure irradiated by near-infrared light has been proved to have positive regulation on stem cell maturation and neuron-like cell differentiation of human adipose-derived stem cells (hADSCs). This regulation method avoids the use of wire connection of external power source, which realizes the stem cell fate regulation by external field. In addition, this work demonstrated that it is promising to realize the light promoted nerve repair in bodies by using implantable plasmonic nanomaterial with absorption in near-infrared region within human “optical window”, which has important academic value and application prospect. As we know, this is the first time to use semiconductor nanostructures as a medium to regulate stem cells neuron-like cell differentiation by near-infrared light and LSPR of plasmonic nanomaterial, which will have great influence on biomedical engineering and attract broad attention from nanomaterials scientist, neurobiologist, and neurosurgeon.
关键词: neuron-like cell differentiation,plasmonic effect,near-infrared light,hADSCs,copper sulfide nanostructure
更新于2025-09-19 17:13:59
-
Plasmonic Effects of Dual-Metal Nanoparticle Layers for High-Performance Quantum Dot Solar Cells
摘要: To improve quantum dot solar cell performance, it is crucial to make efficient use of the available incident sunlight to ensure that the absorption is maximized. The ability of metal nanoparticles to concentrate incident sunlight via plasmon resonance can enhance the overall absorption of photovoltaic cells due to the strong confinement that results from near-field coupling or far-field scattering plasmonic effects. Therefore, to simultaneously and synergistically utilize both plasmonic effects, the placement of different plasmonic nanostructures at the appropriate locations in the device structure is also critical. Here, we introduce two different plasmonic nanoparticles, Au and Ag, to a colloidal PbS quantum dot heterojunction at the top and bottom interface of the electrodes for further improvement of the absorption in the visible and near-infrared spectral regions. The Ag nanoparticles exhibit strong scattering whereas the Au nanoparticles exhibit an intense optical effect in the wavelength region where the absorption of light of the PbS quantum dot is strongest. It is found that these dual-plasmon layers provide significantly improved short-circuit current and power conversion efficiency without any form of trade-off in terms of the fill factor and open-circuit voltage, which may result from the indirect contact between the plasmonic nanoparticles and colloidal quantum dot films.
关键词: Quantum dot solar cell,Plasmonic effect,Near-field oscillation,Colloidal quantum dot,Light scattering
更新于2025-09-16 10:30:52
-
Facile one-pot synthesis of gold/tin oxide quantum dots for visible light catalytic degradation of methylene blue: Optimization of plasmonic effect
摘要: Discovery and development of novel photocatalysts with superior performance in visible light is a fundamental step toward tackling several environment and energy related issues. In this study, a simple one-pot solvothermal approach was adopted to fabricate a series of novel SnO2 quantum dot/gold (SQD/Au) nanocomposites. The structure, morphology, chemical composition, and the optical and photocatalytic performance of the as-prepared SQD/Au nanocomposites were described. The dispersion of Au nanoparticles (NPs) over SQDs can significantly improve the synergistic charge transfer mechanism, which retards the reunion of photoinduced electron-hole pairs and results in decreased emission intensity. In particular, the SQD/Au nanocomposites with 1.00 mL in 100 mM gold chloride loading achieve a methylene blue (MB) degradation of 99% under visible light illumination within 150 min. This can be ascribed to the plasmonic effect of Au NPs in the visible region and the SQDs acting as an electron tank to receive the photoinduced electrons. Furthermore, the formation of a Schottky barrier between SQDs and Au NPs improved the charge separation efficiency, and enhanced the photocatalytic activity. A possible photocatalytic mechanism for the improved degradation efficiency of MB by SQD/Au nanocomposites is also proposed.
关键词: Photocatalysis,SnO2,Metal-semiconductor,Quantum dots,Plasmonic effect
更新于2025-09-12 10:27:22
-
Maskless Patterning of Metal Outflow in Alternating Metal/Ceramic Multiple Nanolayers by Femtosecond Laser Irradiation
摘要: In this work, solid-state metal transport from internal metal nanolayers onto the surface of metal/ceramic nano-multi-layers (NMLs) has been directed in a controlled way by femtosecond (fs) laser irradiation and subsequent low temperature thermal annealing. Laser irradiation induced modifications of the NML microstructures and stress states can be limited within the first few top nanolayers due to the focused laser energy input at the metal/ceramic interface by exploiting the local plasmonic effect. Accompanied laser peening can further refine the crystallites and introduce compressive stress at the laser-irradiated region, which reduces the activation energies for vacancy formation and migration of metal atoms in the nano-confinement. Patterned Cu surface nanostructures (outflow) appear selectively along the laser path after air annealing at temperatures down to 360 ℃. For the solid-state diffusion of Cu in confinement, in-plane metal transport along the Cu-AlN interfaces is much faster than the outward short-circuit diffusion of Cu across the AlN barrier layers. Localized metal outflow is accompanied by the collapse and sintering of the remaining AlN barrier layers, under influence of the acting capillary forces, which may further accelerate the metal transport. This laser induced maskless patterning of metal outflow is not only applicable in Cu/AlN NMLs, but also in Ag/AlN NMLs, assisted by subsequent low temperature annealing.
关键词: solid-state metal transport,laser peening,metal/ceramic nanolayers,femtosecond laser,plasmonic effect
更新于2025-09-12 10:27:22