修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

13 条数据
?? 中文(中国)
  • Diagnosis and prognosis of myocardial infarction on a plasmonic chip

    摘要: Cardiovascular diseases lead to 31.5% of deaths globally, and particularly myocardial infarction (MI) results in 7.4 million deaths per year. Diagnosis of MI and monitoring for prognostic use are critical for clinical management and biomedical research, which require advanced tools with accuracy and speed. Herein, we developed a plasmonic gold nano-island (pGold) chip assay for diagnosis and monitoring of MI. On-chip microarray analysis of serum biomarkers (e.g., cardiac troponin I) afforded up to 130-fold enhancement of near-infrared fluorescence for ultra-sensitive and quantitative detection within controlled periods, using 10 μL of serum only. The pGold chip assay achieved MI diagnostic sensitivity of 100% and specificity of 95.54%, superior to the standard chemiluminescence immunoassay in cardiovascular clinics. Further, we monitored biomarker concentrations regarding percutaneous coronary intervention for prognostic purpose. Our work demonstrated a designed approach using plasmonic materials for enhanced diagnosis and monitoring for prognostic use towards point-of-care testing.

    关键词: myocardial infarction,plasmonic gold nano-island chip,diagnosis,monitoring,point-of-care testing

    更新于2025-09-23 15:21:01

  • Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics

    摘要: Bioelectronics for healthcare that monitor the health information on users in real time have stepped into the limelight as crucial electronic devices for the future due to the increased demand for “point-of-care” testing, which is defined as medical diagnostic testing at the time and place of patient care. In contrast to traditional diagnostic testing, which is generally conducted at medical institutions with diagnostic instruments and requires a long time for specimen analysis, point-of-care testing can be accomplished personally at the bedside, and health information on users can be monitored in real time. Advances in materials science and device technology have enabled next-generation electronics, including flexible, stretchable, and biocompatible electronic devices, bringing the commercialization of personalized healthcare devices increasingly within reach, e.g., wearable bioelectronics attached to the body that monitor the health information on users in real time. Additionally, the monitoring of harmful factors in the environment surrounding the user, such as air pollutants, chemicals, and ultraviolet light, is also important for health maintenance because such factors can have short- and long-term detrimental effects on the human body. The precise detection of chemical species from both the human body and the surrounding environment is crucial for personal health care because of the abundant information that such factors can provide when determining a person’s health condition. In this respect, sensor applications based on an organic-transistor platform have various advantages, including signal amplification, molecular design capability, low cost, and mechanical robustness (e.g., flexibility and stretchability).

    关键词: organic transistor-based chemical sensors,health monitoring,wearable bioelectronics,environmental monitoring,point-of-care testing

    更新于2025-09-23 15:21:01

  • [IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Nanoprobe-Enabled Electron Beam Induced Current Measurements on III-V Nanowire-Based Solar Cells

    摘要: The development of two new types of high-density, electroless plated microelectrode arrays for CMOS-based high-sensitivity direct bacteria and HeLa cell counting are presented. For emerging high-sensitivity direct pathogen counting, two technical challenges must be addressed. One is the formation of a bacteria-sized microelectrode, and the other is the development of a high-sensitivity and high-speed amperometry circuit. The requirement for microelectrode formation is that the gold microelectrodes are required to be as small as the target cell. By improving a self-aligned electroless plating technique, the dimensions of the microelectrodes on a CMOS sensor chip in this work were successfully reduced to 1.2 μm × 2.05 μm. This is 1/20th of the smallest size reported in the literature. Since a bacteria-sized microelectrode has a severe limitation on the current flow, the amperometry circuit has to have a high sensitivity and high speed with low noise. In this work, a current buffer was inserted to mitigate the potential fluctuation. Three test chips were fabricated using a 0.6-μm CMOS process: two with 1.2 μm × 2.05 μm 1024 × 1024 and 4 μm × 4 μm (16 × 16) sensor arrays and one with 6-μm × 6-μm (16 × 16) sensor arrays; and the microelectrodes were formed on them using electroless plating. The uniformity among the 1024 × 1024 electrodes arranged with a pitch of 3.6 μm × 4.45 μm was optically verified. For improving sensitivity, the trenches on each microelectrode were developed and verified optically and electrochemically for the first time. Higher sensitivity can be achieved by introducing a trench structure than by using a conventional microelectrode formed by contact photolithography. Cyclic voltammetry (CV) measurements obtained using the 1.2 μm × 2.05 μm 16 × 16 and 6-μm × 6-μm 16 × 16 sensor arrays with electroless-plated microelectrodes successfully demonstrated direct counting of the bacteria-sized microbeads and HeLa cells.

    关键词: Bacteria counting,HeLa cells,electroless plating,point-of-care testing,CMOS,microelectrode array

    更新于2025-09-23 15:19:57

  • [IEEE 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) - Chengdu, China (2019.12.20-2019.12.22)] 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC) - Deterministic hierarchical joint remote state preparation using partially entangled quantum channel

    摘要: The development of two new types of high-density, electroless plated microelectrode arrays for CMOS-based high-sensitivity direct bacteria and HeLa cell counting are presented. For emerging high-sensitivity direct pathogen counting, two technical challenges must be addressed. One is the formation of a bacteria-sized microelectrode, and the other is the development of a high-sensitivity and high-speed amperometry circuit. The requirement for microelectrode formation is that the gold microelectrodes are required to be as small as the target cell. By improving a self-aligned electroless plating technique, the dimensions of the microelectrodes on a CMOS sensor chip in this work were successfully reduced to 1.2 μm × 2.05 μm. This is 1/20th of the smallest size reported in the literature. Since a bacteria-sized microelectrode has a severe limitation on the current flow, the amperometry circuit has to have a high sensitivity and high speed with low noise. In this work, a current buffer was inserted to mitigate the potential fluctuation. Three test chips were fabricated using a 0.6-μm CMOS process: two with 1.2 μm × 2.05 μm 1024 × 1024 and 4 μm × 4 μm (16 × 4) sensor arrays and one with 6-μm × 6-μm (16 × 16) sensor arrays; and the microelectrodes were formed on them using electroless plating. The uniformity among the 1024 × 1024 electrodes arranged with a pitch of 3.6 μm × 4.45 μm was optically verified. For improving sensitivity, the trenches on each microelectrode were developed and verified optically and electrochemically for the first time. Higher sensitivity can be achieved by introducing a trench structure than by using a conventional microelectrode formed by contact photolithography. Cyclic voltammetry (CV) measurements obtained using the 1.2 μm × 2.05 μm 16 × 4 and 6-μm × 6-μm 16 × 16 sensor arrays with electroless-plated microelectrodes successfully demonstrated direct counting of the bacteria-sized microbeads and HeLa cells.

    关键词: microelectrode array,point-of-care testing,HeLa cells,electroless plating,Bacteria counting,CMOS

    更新于2025-09-23 15:19:57

  • [IEEE 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) - Metz, France (2019.9.18-2019.9.21)] 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS) - Solar Cell Data Acquisition System

    摘要: The development of two new types of high-density, electroless plated microelectrode arrays for CMOS-based high-sensitivity direct bacteria and HeLa cell counting are presented. For emerging high-sensitivity direct pathogen counting, two technical challenges must be addressed. One is the formation of a bacteria-sized microelectrode, and the other is the development of a high-sensitivity and high-speed amperometry circuit. The requirement for microelectrode formation is that the gold microelectrodes are required to be as small as the target cell. By improving a self-aligned electroless plating technique, the dimensions of the microelectrodes on a CMOS sensor chip in this work were successfully reduced to 1.2 μm × 2.05 μm. This is 1/20th of the smallest size reported in the literature. Since a bacteria-sized microelectrode has a severe limitation on the current flow, the amperometry circuit has to have a high sensitivity and high speed with low noise. In this work, a current buffer was inserted to mitigate the potential fluctuation. Three test chips were fabricated using a 0.6-μm CMOS process: two with 1.2 μm × 2.05 μm 1024 × 1024 and 4 μm × 4 μm (16 × 4) sensor arrays and one with 6-μm × 6-μm (16 × 16) sensor arrays; and the microelectrodes were formed on them using electroless plating. The uniformity among the 1024 × 1024 electrodes arranged with a pitch of 3.6 μm × 4.45 μm was optically verified. For improving sensitivity, the trenches on each microelectrode were developed and verified optically and electrochemically for the first time. Higher sensitivity can be achieved by introducing a trench structure than by using a conventional microelectrode formed by contact photolithography. Cyclic voltammetry (CV) measurements obtained using the 1.2 μm × 2.05 μm 16 × 4 and 6-μm × 6-μm 16 × 16 sensor array with electroless-plated microelectrodes successfully demonstrated direct counting of the bacteria-sized microbeads and HeLa cells.

    关键词: microelectrode array,point-of-care testing,HeLa cells,electroless plating,Bacteria counting,CMOS

    更新于2025-09-19 17:13:59

  • [IEEE 2019 Photonics North (PN) - Quebec City, QC, Canada (2019.5.21-2019.5.23)] 2019 Photonics North (PN) - Femtosecond Laser Opening of Hollow-Filament Arrays: the Fiber Bragg Grating Opto-fluidic Sensor

    摘要: The development of two new types of high-density, electroless plated microelectrode arrays for CMOS-based high-sensitivity direct bacteria and HeLa cell counting are presented. For emerging high-sensitivity direct pathogen counting, two technical challenges must be addressed. One is the formation of a bacteria-sized microelectrode, and the other is the development of a high-sensitivity and high-speed amperometry circuit. The requirement for microelectrode formation is that the gold microelectrodes are required to be as small as the target cell. By improving a self-aligned electroless plating technique, the dimensions of the microelectrodes on a CMOS sensor chip in this work were successfully reduced to 1.2 μm × 2.05 μm. This is 1/20th of the smallest size reported in the literature. Since a bacteria-sized microelectrode has a severe limitation on the current flow, the amperometry circuit has to have a high sensitivity and high speed with low noise. In this work, a current buffer was inserted to mitigate the potential fluctuation. Three test chips were fabricated using a 0.6-μm CMOS process: two with 1.2 μm × 2.05 μm 1024 × 1024 and 4 μm × 4 μm (16 × 4) sensor arrays and one with 6-μm × 6-μm (16 × 16) sensor arrays; and the microelectrodes were formed on them using electroless plating. The uniformity among the 1024 × 1024 electrodes arranged with a pitch of 3.6 μm × 4.45 μm was optically verified. For improving sensitivity, the trenches on each microelectrode were developed and verified optically and electrochemically for the first time. Higher sensitivity can be achieved by introducing a trench structure than by using a conventional microelectrode formed by contact photolithography. Cyclic voltammetry (CV) measurements obtained using the 1.2 μm × 2.05 μm 16 × 4 and 6-μm × 6-μm 16 × 16 sensor array with electroless-plated microelectrodes successfully demonstrated direct counting of the bacteria-sized microbeads and HeLa cells.

    关键词: microelectrode array,point-of-care testing,HeLa cells,electroless plating,Bacteria counting,CMOS

    更新于2025-09-19 17:13:59

  • Analysis of the release kinetics of surface-bound proteins via laser-induced fluorescence

    摘要: The drying and resolving processes of surface-bound proteins were analysed with a stereoscopic microscope combined with laser-induced fluorescence (LIF) with the aim to assist the advancement of a semi-automated point-of-care allergy diagnostic device. The results shown in this paper present the use of the LIF-method for concentration calibration and the analysis of drying and resolving dyed proteins. The method is established successfully and delivers precise results.

    关键词: point-of-care testing (POCT),laser-induced fluorescence,spectroscopy,release kinetics

    更新于2025-09-16 10:30:52

  • Advances in nanoplasmonic biosensors for clinical applications

    摘要: Biomarkers are unquestionable biological indicators for diagnosis and therapeutic interventions providing appropriate classification of a wide range of health disorders and risk factors. Nonetheless, the detection and quantification of biomarkers need to be tested with sufficient reliability by robust analytical methods in order to assure clinical performance in health care settings. Since the analytical performance is determined by the sensitivity and specificity of the method employed, techniques have been intensively refined in order to avoid the misinterpretation of results and undesirable bias. Although biomarkers can be detected with the existing analytical techniques, to reproducibly quantify them in decentralized settings or remote locations with the required accuracy is still a challenge. Currently, only a few point-of-care devices for biomarker evaluation are commercially available. Thus, more focused research efforts are needed to overcome these limitations in order to provide universal patient-centered care platforms. To this end, plasmonic biosensors can be conveniently used as portable diagnostic devices for attaining timely and cost-effective clinical outcomes. The development of enhanced performance based on nanoplasmonics technology opens the way for sensor miniaturization, multiplexing and point of care testing. This review covers recent advances and applications of plasmonic and nanoplasmonic biosensors intended for biomarker diagnosis in clinical practice, including cancer, cardiovascular and neurodegenerative diseases. The review specially focuses on: (i) recent progress in plasmonics development including the design of singular nanostructured surfaces, (ii) novel chemical functionalization strategies for the appropriate incorporation of bioreceptors and (iii) plasmonic applications as real operative devices in the clinical field. Future prospects in the use of nanoplasmonic sensor platforms for personalised quantification and management of biomarkers directly in body fluids will also be discussed.

    关键词: clinical applications,SPR,point-of-care testing,nanoplasmonic biosensors,biomarkers,LSPR

    更新于2025-09-12 10:27:22

  • Photothermal Microfluidic Sensing Platform Using Near-Infrared Laser-Driven Multiplexed Dual-Mode Visual Quantitative Readout

    摘要: The application of different sensing principles in microfluidic devices opens up further possibilities for the development of point-of-care testing (POCT). Herein, the photothermal sensing principle is introduced in microfluidic paper-based analytical devices (μPADs) to develop a photothermal microfluidic sensing platform using near-infrared (NIR) laser-driven multiplexed dual-mode visual quantitative readout. Prussian blue (PB) as the analyte-associated photothermal agent was in-situ synthesized in thermoresponsive poly(N-isopropylacrylamide) hydrogels to serve as the on-chip photothermal sensing element. NIR laser-driven photothermal effect of PB triggered not only on-chip dose-dependent heat generation but also phase transition-induced dye release from the hydrogels, simultaneously enabling both thermal image- and distance-based dual-mode visual quantitative readout of the analyte concentration in a multiplexed manner. Both the on-chip temperature elevation value of the hydrogels and the traveling distance of released dye solutions were proportional to the concentration of PB. Using the detection of silver ions in environmental water as a proof-of-concept study, the photothermal μPAD can detect silver ions at a concentration as low as 0.25 μM with high selectivity and satisfactory accuracy. The photothermal microfluidic sensing platform holds great potential for POCT with promising integratability and broad applicability, owing to the combination of synergistic advantages of the photothermal sensing principle, μPADs and photothermally responsive hydrogels.

    关键词: Microfluidic device,Photothermal effect,Visual readout,Point-of-care testing,Thermoresponsive hydrogel

    更新于2025-09-11 14:15:04

  • ?Lab on a Chip“; Lab on a Chip;

    摘要: Background. Miniaturization has not only driven microelectronics and generated new unforeseen options but has also dramatically changed sensors and analytics. Developments. The Lab on a Chip (LOC) technology enables laboratory processes to run fully automated in canals in the micrometre range. The biggest challenge for LOC is to keep production costs low despite miniaturization and application-specific design. If this is achieved medical laboratory analyses can usually be carried out faster and with less hands on time. This explains why LOCs are already integrated into many laboratory instruments and why point-of-care testing (POCT) can no longer be imagined without it. New markers, such as in liquid biopsies and measurement techniques, such as Raman spectroscopy and mass spectroscopy, create further potentials that will enable faster and more specific laboratory analyses to be made using LOC technology. Conclusion. The LOC technology has the potential of changing the medical practice especially in cases when the central laboratory is not available or is unable to provide results fast enough.

    关键词: Laboratory diagnostics,Mass spectrometry,Point-of-care testing,Spectrum analysis, Raman,Microfluidics

    更新于2025-09-10 09:29:36