- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Achieving a superior electrocatalytic activity of carbon cloth via atomic layer deposition as a flexible counter electrode for efficient dye-sensitized solar cells
摘要: Dye-sensitized solar cell (DSSC) is appealing to renewable energy communities because of its attractive features of low cost, facile assembly and short energy payback time. Nevertheless, the commonly used platinum as the counter electrode (CE) encounters great difficulties in its scarcity and noble nature. Herein, we demonstrate a promising and facile route to attain an earth-abundant, high-conductivity Pt-free flexible CE with the controllable catalytic activity via the atomic layer deposition (ALD) of ZnO as the nanoscale sacrificial template. Our result reveals the electrocatalytic activity of carbon cloth as a function of surface morphology can be successfully tailored by the ALD cycle. It can be ascribed to the interplay of ZnO and carbon during carbothermic reduction, offering the synergetic effects of the defects and oxygen doping on the carbon cloth surface as the enhanced catalytic sites for the regeneration of triiodide into iodide. As a proof of concept, the DSSC using the activated carbon cloth via ALD is enabled to deliver a boosted conversion efficiency by 79%, as compared with that using pristine carbon cloth. Such a promising route can open up a perspective for reaching an earth-abundant, high-conductivity carbon-based flexible CE with the superior catalytic activity for the photoelectrochemical cells.
关键词: Pt-free counter electrode,Dye-sensitized solar cell,Carbon cloth,Atomic layer deposition,ZnO
更新于2025-09-23 15:19:57
-
N- and S-codoped graphene hollow nanoballs as an efficient Pt-free electrocatalyst for dye-sensitized solar cells
摘要: We synthesize heteroatoms-doped graphene hollow nanoballs (GHBs) on flexible carbon cloth (CC) substrates via chemical vapor deposition (CVD) reaction to be used as an efficient non-noble electrocatalyst in dye-sensitized solar cells (DSSCs). The as-synthesized heteroatoms-doped GHBs/CC, including nitrogen-doped GHBs, sulfur-doped GHBs, and nitrogen and sulfur-codoped GHBs (denoted by N-GHBs/CC, S-GHBs/CC and N,S-GHBs/CC, respectively), are used as an efficient counter electrode (CE) in DSSCs. Unlike planar graphene sheets, the highly curved GHBs can avoid self-assembly restacking to provide high surface areas for electrocatalytic reactions. In addition, the heteroatomic incorporation in GHBs can reduce the charge-transfer resistance to enhance the electrocatalytic activity. Among these doped GHB samples, N,S-GHBs show the best catalytic performance due to the synergistic effect from both electronic and geometric changes, caused by the N- and S-dopings, respectively. The DSSC with a N,S-GHB CE exhibits the power conversion efficiency of 9.02%, comparable to that (8.90%) of a Pt-based counterpart.
关键词: Dye-sensitized solar cell,Heteroatom-doping,Graphene hollow ball,Chemical vapor deposition,Pt-free counter electrode
更新于2025-09-11 14:15:04