修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • Thin-Film Solar Cells

    摘要: Copper-indium-gallium-diselenide (CIGS) thin-film solar cells suffer from high recombination losses at the back contact and parasitic absorption in the front-contact layers. Dielectric passivation layers overcome these limitations and enable an efficient control over interface recombination, which becomes increasingly relevant as thin-film solar cells increase in efficiency and become thinner to reduce the consumption of precious resources. We present the optoelectronic and chemical interface properties of oxide-based passivation layers deposited by atomic layer deposition on CIGS. A suitable postdeposition annealing removes detrimental interface defects and leads to restructuring and oxidation of the CIGS surface. The optoelectronic interface properties are very similar for different passivation approaches, demonstrating that an efficient suppression of interface states is possible independent of the metal used in the passivating oxide. If aluminum oxide (Al2O3) is used as the passivation layer we confirm an additional field-effect passivation due to interface charges, resulting in an efficient interface passivation superior to that of a state-of-the-art cadmium-sulfide (CdS) buffer layer. Based on this chemical interface model we present a full-area rear-interface passivation layer without any contact patterning, resulting in a 1% absolute efficiency gain compared to a standard molybdenum back contact.

    关键词: CIGS,CdS,atomic layer deposition,oxidation,thin-film solar cells,recombination losses,Al2O3,interface passivation

    更新于2025-09-23 15:21:01

  • Insights from Device Modeling of Perovskite Solar Cells

    摘要: In this perspective, we explore the insights into the device physics of perovskite solar cells gained from modeling and simulation of these devices. We discuss a range of factors that influence the modeling of perovskite solar cells, including the role of ions, dielectric constant, density of states, and spatial distribution of recombination losses. By focusing on the effect of non-ideal energetic alignment in perovskite photovoltaic devices, we demonstrate a unique feature in low recombination perovskite materials – the formation of an interfacial, primarily electronic, self-induced dipole that results in a significant increase in the built-in potential and device open-circuit voltage. Finally, we discuss the future directions of device modeling in the field of perovskite photovoltaics, describing some of the outstanding open questions in which device simulations can serve as a particularly powerful tool for future advancements in the field.

    关键词: device physics,density of states,simulation,device modeling,recombination losses,dielectric constant,perovskite solar cells,energetic alignment

    更新于2025-09-19 17:13:59

  • Elucidating the effect of shunt losses on the performance of mesoporous perovskite solar cells

    摘要: Mesoporous perovskite solar cells (MPSCs) suffer from various types of charge carrier losses, where shunt losses usually dominate. Herein, we perform a systematic study to investigate the impact of such losses on the photovoltaic performance of methylammonium lead iodide (MAPbI3)-based MPSCs. The shunt losses in the MPSCs are attributed to the leakage current and the non-geminated recombination losses. We also demonstrate that these losses can be reduced by the incorporation of appropriate thickness of compact titanium oxide (c-TiO2) interlayer between FTO and mesoporous TiO2 (m-TiO2). As a result, MPSCs exhibit higher open-circuit voltage (VOC) of 1.05 V, short-circuit current density (JSC) of 23.27 mA cm?2, and the power conversion efficiency (PCE) of 17.69% under one-sun illumination conditions. The improved device performance was attributed to (i) the efficient blocking of holes, (ii) the decrease of leakage current, and (iii) the suppression of the non-geminated recombination losses in the cells. The effect of the c-TiO2 layer thickness on the series resistance (RS), shunt resistance (RSh), and the non-geminated recombination were also discussed in detail.

    关键词: Non-geminated recombination losses,Series and shunt resistance,Electron transport layer,Leakage current,Perovskite solar cell

    更新于2025-09-11 14:15:04

  • Highly Efficient Indoor Organic Solar Cells by Voltage Losses Minimization through Fine-tuning of Polymer Structures

    摘要: Herein we report a detailed study on the optoelectronic properties, photovoltaic performance, structural conformation, morphology variation, charge carrier mobility and recombination dynamics in bulk heterojunction (BHJ) solar cells comprising of a series of donor-acceptor (D-A) conjugated polymers as electron donors based on benzodithiophene (BDT) and 5,8-bis(5-bromothiophen-2-yl)-6,7-difluoro-2,3-bis(3-(octyloxy)phenyl)quinoxaline as a function of the BDT’s thienyl substitution (alkyl (WF3), alkylthio (WF3S) and fluoro (WF3F)). It is manifested the synergistic positive effects of the fluorine substituents on the minimization of the bimolecular recombination losses, the reduction of the series resistances (RS), the increment of the shunt resistances (RSh), the suppression of the trap-assisted recombination losses, the balanced charge transport, the finer nanoscale morphology and the deeper highest occupied molecular orbital (EHOMO) versus the alkyl- and alkylthio- substituents. According to these findings, WF3F:[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) based-organic photovoltaic (OPV) device is a scarce example that feature a high power conversion efficiency (PCE) of 17.34% under 500 lx indoor LED light with a high open-circuit voltage (VOC) of 0.69 V, due to the suppression of the voltage losses and a PCE of 9.44% at 1-sun (100 mW/cm2) conditions, simultaneously.

    关键词: Series and Shunt resistances,Coherence length,Conjugated polymers,Wide-angle X-ray scattering,Organic photovoltaic devices,Recombination losses,Indoor lighting conditions

    更新于2025-09-11 14:15:04

  • Minimizing non-radiative recombination losses in perovskite solar cells

    摘要: Photovoltaic solar cells based on metal-halide perovskites have gained considerable attention over the past decade because of their potentially low production cost, earth-abundant raw materials, ease of fabrication and ever-increasing power-conversion efficiencies of up to 25.2%. This type of solar cells offers the promise of generating electricity at a more competitive unit price than traditional fossil fuels by 2035. Nevertheless, the best research-cell efficiencies are still below the theoretical limit defined by the Shockley–Queisser theory, owing to the presence of non-radiative recombination losses. In this Review, we analyse the predominant pathways that contribute to non-radiative recombination losses in perovskite solar cells and evaluate their impact on device performance. We then discuss how non-radiative recombination losses can be estimated through reliable characterization techniques and highlight some notable advances in mitigating these losses, which hint at pathways towards defect-free perovskite solar cells. Finally, we outline directions for future work that will push the efficiency of perovskite solar cells towards the radiative limit.

    关键词: defect passivation,photovoltaic,perovskite solar cells,Shockley–Queisser theory,non-radiative recombination losses

    更新于2025-09-11 14:15:04