修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

65 条数据
?? 中文(中国)
  • The luminescent HiBiT peptide enables selective quantitation of G proteina??coupled receptor ligand engagement and internalization in living cells

    摘要: G protein– coupled receptors (GPCRs) are prominent targets to new therapeutics for a range of diseases. Comprehensive assessments of their cellular interactions with bioactive compounds, particularly in a kinetic format, are imperative to the development of drugs with improved efficacy. Hence, we developed complementary cellular assays that enable equilibrium and real-time analyses of GPCR ligand engagement and consequent activation, measured as receptor internalization. These assays utilize GPCRs genetically fused to an N-terminal HiBiT peptide (1.3 kDa), which produces bright luminescence upon high-affinity complementation with LgBiT, an 18-kDa subunit derived from NanoLuc. The cell impermeability of LgBiT limits signal detection to the cell surface and enables measurements of ligand-induced internalization through changes in cell-surface receptor density. In addition, bioluminescent resonance energy transfer is used to quantify dynamic interactions between ligands and their cognate HiBiT-tagged GPCRs through competitive binding with fluorescent tracers. The sensitivity and dynamic range of these assays benefit from the specificity of bioluminescent resonance energy transfer and the high signal intensity of HiBiT/LgBiT without background luminescence from receptors present in intracellular compartments. These features allow analyses of challenging interactions having low selectivity or affinity and enable studies using endogenously tagged receptors. Using the (cid:2)-adrenergic receptor family as a model, we demonstrate the versatility of these assays by utilizing the same HiBiT construct in analyses of multiple aspects of GPCR pharmacology. We anticipate that this combination of target engagement and proximal functional readout will prove useful to the study of other GPCR families and the development of new therapeutics.

    关键词: LgBiT,receptor internalization,BRET,ligand engagement,NanoLuc,HiBiT,GPCR,bioluminescent resonance energy transfer

    更新于2025-09-19 17:13:59

  • In Situ Investigation on the Protein Corona Formation of Quantum Dots by Using Fluorescence Resonance Energy Transfer

    摘要: A fundamental understanding of nanoparticle–protein corona and its interactions with biological systems is essential for future application of engineered nanomaterials. In this work, fluorescence resonance energy transfer (FRET) is employed for studying the protein adsorption behavior of nanoparticles. The adsorption of human serum albumin (HSA) onto the surface of InP@ZnS quantum dots (QDs) with different chirality (d- and l-penicillamine) shows strong discernible differences in the binding behaviors including affinity and adsorption orientation that are obtained upon quantitative analysis of FRET data. Circular dichroism spectroscopy further confirms the differences in the conformational changes of HSA upon interaction with d- and l-chiral QD surfaces. Consequently, the formed protein corona on chiral surfaces may affect their following biological interactions, such as possible protein exchange with serum proteins plasma as well as cellular interactions. These results vividly illustrate the potential of the FRET method as a simple yet versatile platform for quantitatively investigating biological interactions of nanoparticles.

    关键词: serum proteins,quantum dots,chirality,nanoparticle–protein interactions,protein corona,fluorescence resonance energy transfer

    更新于2025-09-19 17:13:59

  • Nonradiative Energy Transfer in a??Colloidal Quantum Dot Nanoclustera??Dyea?? Hybrid Nanostructures: Computer Experiment

    摘要: A computer model of nonradiative electronic excitation energy transfer from nanoclusters of colloidal quantum dots of cadmium selenide to the meso-tetra(3-pyridyl)porphyrin molecule in hybrid nanostructures nanocluster–dye has been constructed and analyzed. The model uses the experimental luminescence and absorption spectra of quantum dots and the dye, takes into account heterogeneity of the properties of quantum dots in nanoclusters and the different location of the dye in the hybrid structure. It has been shown that, in the ideal case, due to such energy transfer, the intensity of the luminescent signal of the dye can be increased by five orders of magnitude. However, this value is significantly reduced due to nonluminescent particles, the presence of a protective ligand shell, a large size distribution of the particles, and the non-optimal geometric structure of the hybrid system.

    关键词: porphyrin dye,colloidal quantum dots,F?rster resonance energy transfer,hybrid systems,cadmium selenide,computer simulation

    更新于2025-09-19 17:13:59

  • Plasmon-Emitter Hybrid Nanostructures of Gold Nanorod-Quantum Dots with Regulated Energy Transfer as a Universal Nano-Sensor for One-step Biomarker Detection

    摘要: Recently, biosensing based on weak coupling in plasmon-emitter hybrid nanostructures exhibits the merits of simplicity and high sensitivity, and attracts increasing attention as an emerging nano-sensor. In this study, we propose an innovative plasmon-regulated fluorescence resonance energy transfer (plasmon-regulated FRET) sensing strategy based on a plasmon-emitter hybrid nanostructure of gold nanorod-quantum dots (Au NR-QDs) by partially modifying QDs onto the surfaces of Au NRs. The Au NR-QDs showed good sensitivity and reversibility against refractive index change. We successfully employed the Au NR-QDs to fabricate nano-sensors for detecting a cancer biomarker of alpha fetoprotein with a limit of detection of 0.30 ng/mL, which displays that the sensitivity of the Au NR-QDs nano-sensor was effectively improved compared with the Au NRs based plasmonic sensing. Additionally, to demonstrate the universality of the plasmon-regulated FRET sensing strategy, another plasmon-emitter hybrid nano-sensor of Au nano-prism-quantum dots (Au NP-QDs) were constructed and applied for detecting a myocardial infarction biomarker of cardiac troponin I. It was first reported that the change of absorption spectra of plasmonic structure in a plasmon-emitter hybrid nanostructure was employed for analytes detection. The plasmon-regulated FRET sensing strategy described herein has potential utility to develop general sensing platforms for chemical and biological analysis.

    关键词: localized surface plasmon resonance,quantum dot,gold nanorod,biomarker,fluorescence resonance energy transfer,plasmonic-emitter hybrid nanostructure

    更新于2025-09-16 10:30:52

  • Photophysics and electroluminescence of red quantum dots diluted in a thermally activated delayed fluorescence host

    摘要: A feasible, universal, and low-cost strategy for quantum dot light-emitting devices (QLEDs) was provided to significantly enhance the electroluminescent performances. The emissive layer consists of organic host materials and quantum dots (QDs), and then the efficient energy transfer process remarkably promotes the device performances. It is confirmed that a highly efficient QLED can be realized by a host–guest system without common hole transport layers. The red device based on the thermally activated delayed fluorescence host and QD guest achieved a peak external quantum efficiency of 7.4%. Further, by simply modifying PEDOT:PSS with poly(4-styrenesulfonic acid), the work-function can be easily elevated, accompanied with the boosted external quantum efficiency to 11.9%. It is believed that such performances originate simultaneously from reduced interfacial fluorescence quenching, elevated work-function and efficient F?rster resonance energy transfer in the host–guest system.

    关键词: external quantum efficiency,electroluminescent performances,quantum dot light-emitting devices,QLEDs,thermally activated delayed fluorescence,F?rster resonance energy transfer,host–guest system

    更新于2025-09-16 10:30:52

  • Preparation of CdTe superparticles for white light-emitting diodes without F?rster resonance energy transfer

    摘要: Due to many unique and excellent optical properties, quantum dots (QDs) have been seen as one of the most promising color conversion materials in light-emitting diodes (LEDs). However, the F¨orster resonance energy transfer (FRET) among di?erent colored QDs always causes a signi?cant red-shift of the ?uorescence emission, impeding the fabrication of LEDs with predicted photoluminescence (PL) emission spectra. In this work, we take advantage of CdTe superparticles (SPs), which are assembled by CdTe QDs, as the color conversion materials for the fabrication of WLEDs. Because of their submicron size, the distance between QDs with di?erent emissions can be large enough to avoid the FRET process. More importantly, this method provides us with an opportunity to precisely design and regulate the PL emission spectra of LEDs. By easily overlapping the individual PL spectra of CdTe SPs with di?erent emissions, the certain ratio of their usage for fabricating LEDs with desired PL emission spectra is identi?ed. According to this idea, a WLED with a color rendering index (CRI) of 81, luminous e?cacy of 27 lm W(cid:1)1, and color coordinate at (0.33, 0.34) with the color temperature of 5742 K is achieved.

    关键词: F¨orster resonance energy transfer,white light-emitting diodes,quantum dots,color conversion materials,CdTe superparticles

    更新于2025-09-16 10:30:52

  • Resonance energy transfer-assisted random lasing in light-harvesting bio-antenna enhanced with a plasmonic local field

    摘要: Thanks to the advent of the random laser, new light applications have opened up, ranging from biophotonic to security devices. Here, by using the well-known but unexplored light-harvesting bio-pigment of butterfly pea (Clitoria ternatea, CT) flower extract, generation of continuous-wave (CW) random lasing at ~660 nm has been demonstrated. Furthermore, a wavelength tunability of ~30 nm in the lasing emission was obtained by utilizing the resonance energy transfer (RET) mechanism in a gain medium with a binary mixture of CT extract and a commercially available methylene blue (MB) dye as the gain medium. In the CT extract–dye mixture, the bio-pigments are acting as donors and the MB dye molecules are acting as acceptors. Amplification in intensity of the lasing emission of this binary system has further been achieved in the presence of optimized concentrations of metal (Ag)–semiconductor (ZnO) scattering nanoparticles. Interestingly, the lasing threshold has been reduced from 128 to 25 W cm?2, with a narrowed emission peak just after loading of the Ag nanoplasmon in the ZnO-doped binary gain medium. Thanks to the strong localized electric field in the metal nanoplasmon, and the multiple scattering effects of ZnO, the lasing threshold was reduced by approximately four times compared to that of the gain medium without the use of scatterers. Thus, we believe that our findings on wavelength-tunable, non-toxic, biocompatible random lasing will open up new applications, including the design of low-cost biophotonic devices.

    关键词: light-harvesting bio-antenna,resonance energy transfer,random laser,plasmonic local field,biocompatible

    更新于2025-09-16 10:30:52

  • A new ratiometric fluorescence assay based on resonance energy transfer between biomass quantum dots and organic dye for the detection of sulfur dioxide derivatives

    摘要: Sulfur dioxide (SO2) is considered as the fourth gas signal molecule after nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S). It plays important roles in several physiological processes. Therefore, the design and synthesis of nanoprobes for the detection of SO2 derivatives in cells is of great significance. Herein, we report a new ratiometric fluorescence nanoprobe based on resonance energy transfer (RET) between biomass quantum dots (BQDs) and organic dye (DMI) for the detection of SO2 derivatives. The proposed ratiometric fluorescence assay allows the determination of HSO3? in the range of 1.0 to 225 μM with a detection limit of 0.5 μM. Importantly, the proposed ratiometric fluorescence nanoprobe exhibits a high photostability and good selectivity for HSO3? over other chemical species including H2S and biological mercaptans. Quantitation of HSO3? in cell lysates by using the nanoprobe is demonstrated.

    关键词: ratiometric fluorescence,resonance energy transfer,organic dye,Sulfur dioxide,biomass quantum dots,nanoprobe

    更新于2025-09-16 10:30:52

  • A novel electrochemiluminescence sensor based on resonance energy transfer system between nitrogen doped graphene quantum dots and boron nitride quantum dots for sensitive detection of folic acid

    摘要: Electrochemiluminescence resonance energy transfer (ECL-RET) between quantum dots (QDs) was firstly proposed. In this work, boron nitride quantum dots (BNQDs) as the donor and nitrogen doped graphene quantum dots (NGQDs) as the acceptor were confirmed by the absorption spectrum, the emission spectrum and fluorescence spectrum. Based on the reaction between FA and the SO4?? in the ECL system of NGQDs/BNQDs/K2S2O8, the ECL sensing platform for FA was successfully constructed. Surprisingly, a stable and strong ECL signal was obtained based on the RET, which was used for signal-off detection of FA in the presence of coreactant K2S2O8. Notably, about 10-fold enhancement was observed compared with the absence of BNQDs. The proposed sensor showed wide linear ranges of 1.0 × 10?11 M to 1.0 × 10?4 M and a low detection limit of 5.13 × 10?12 M. Simultaneously, the sensor was successfully applied to detection of FA in human serum samples with excellent recoveries. Therefore, the NGQDs/BNQDs system provided a new perspective for development of novel ECL-RET sensors.

    关键词: Folic acid,Nitrogen doped graphene quantum dots,Resonance energy transfer,Boron nitride quantum dots,Electrochemiluminescence

    更新于2025-09-16 10:30:52

  • Fluorescence resonance energy transfer effect enhanced high performance of Si quantum Dots/CsPbBr3 inverse opal heterostructure perovskite solar cells

    摘要: CsPbBr3 based perovskite solar cells draw boosted investigation benefitting from their simplified preparation property and outstanding stability against moist and heat while the photo-electrical conversion efficiency (PCE) is still worth promotion. In addition, relatively wide band gap limits the light utilization ability of pristine CsPbBr3 which leads to insufficient photo-induced charge carrier population thereby a low photocurrent density. Herein, we for the first time demonstrate a strategy to combine crystalized Si quantum dots (QDs) with CsPbBr3 inverse opal (IO) which significantly enhances the solar energy utilization efficiency by virtue of providing an additional fluorescence resonance energy transfer (FRET) process from Si QDs to CsPbBr3 IO. Acting as donor, the emitted photoluminescence from Si QDs can be absorbed by CsPbBr3, which serves as acceptor, leading to an increased carrier population in the system. Meanwhile, the multi-dimensional heterojunction between Si QDs and CsPbBr3 IO effectively facilitates the system bulk charge transfer process. A greatly improved PCE up to 8.31% with an obviously enhanced photocurrent density up to 7.8 mA?cm?2 can be obtained with a competitive IPCE up to 81%. This strategy provides a new alternative method to develop high-performance perovskite solar cells and other photo-electronic devices.

    关键词: Perovskite solar cells,CsPbBr3,Heterostructure,Fluorescence resonance energy transfer

    更新于2025-09-16 10:30:52