- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Bandgap Engineered Polypyrrole-Polydopamine Hybrid with Intrinsic Raman and Photoacoustic Imaging Contrasts
摘要: Intrinsically multimodal nanomaterials have revealed their great potential as a new class of contrast agents. We herein report a bandgap engineering strategy to develop an intrinsically Raman-photoacoustic (PA) active probe that is based on semiconducting conjugated polymers. This dual modal probe is prepared by doping a semiconducting conjugated polymer with polydopamine (PDA) through a one-pot reaction. When applied in the polypyrrole (PPy), this strategy can enhance Raman scattering and the PA amplitude of PPy-PDA hybrid by 3.2 and 2.4 times, respectively, so that both signals can be further applied in bioimaging. In the hybrid, such a dual-enhancement effect is achieved by infusing these two macromolecules at the nanoscale to reduce the optical bandgap energy. This work not only introduces a dual modal contrast agent but also provides a new method of manipulating semiconducting polymer’s inherent optical features for bioimaging.
关键词: intrinsically multimodal nanomaterials,semiconducting polymers,polydopamine,intermolecular electron transfer
更新于2025-09-10 09:29:36
-
Competition between Exceptionally Long‐Range Alkyl Sidechain Ordering and Backbone Ordering in Semiconducting Polymers and Its Impact on Electronic and Optoelectronic Properties
摘要: Intra- and intermolecular ordering greatly impacts the electronic and optoelectronic properties of semiconducting polymers. The interrelationship between ordering of alkyl sidechains and conjugated backbones has yet to be fully detailed, despite much prior effort. Here, the discovery of a highly ordered alkyl sidechain phase in six representative semiconducting polymers, determined from distinct spectroscopic and diffraction signatures, is reported. The sidechain ordering exhibits unusually large coherence lengths (≥70 nm), induces torsional/twisting backbone disorder, and results in a vertically multilayered nanostructure with ordered sidechain layers alternating with disordered backbone layers. Calorimetry and in situ variable temperature scattering measurements in a model system poly{4-(5-(4,8-bis(3-butylnonyl)-6-methylbenzo[1,2-b:4,5-b′]dithiophen-2-yl)thiophen-2-yl)-2-(2-butyloctyl)-5,6-difluoro-7-(5-methylthiophen-2-yl)-2H-benzo[d][1,2,3]triazole} (PBnDT-FTAZ) clearly delineate this competition of ordering that prevents simultaneous long-range order of both moieties. The long-range sidechain ordering can be exploited as a transient state to fabricate PBnDT-FTAZ films with an atypical edge-on texture and 2.5× improved field-effect transistor mobility. The observed influence of ordering between the moieties implies that improved molecular design can produce synergistic rather than destructive ordering effects. Given the large sidechain coherence lengths observed, such synergistic ordering should greatly improve the coherence length of backbone ordering and thereby improve electronic and optoelectronic properties such as charge transport and exciton diffusion lengths.
关键词: semiconducting polymers,organic electronics,polymer crystals,molecular design,alkyl sidechains
更新于2025-09-04 15:30:14
-
Designing Conjugated Polymers for Molecular Doping: The Roles of Crystallinity, Swelling, and Conductivity in Sequentially-Doped Selenophene-Based Copolymers
摘要: Although chemical doping is widely used to tune the optical and electrical properties of semiconducting polymers, it is not clear how the degree of doping and the electrical properties of the doped materials vary with the bandgap, valence band level, and crystallinity of the polymer. We address this question utilizing a series of statistical copolymers of poly(3-hexylthiophene) (P3HT) and poly(3-heptylselenophene) (P37S) with controlled gradients in bandgap, valence band position and variable crystallinity. We dope the copolymers in our series with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) using solution sequential processing (SqP). We then examine the structures of the films using grazing incidence wide-angle x-ray scattering (GIWAXS), differential scanning calorimetry (DSC) and ellipsometric porosimetry, and the electrical properties of the films via the AC Hall effect. We find that the ability of a particular copolymer to be doped is largely determined by the offset of the polymer’s valence band energy level relative to the LUMO of F4TCNQ. The ability of the carriers created by doping to be highly mobile and thus contribute to the electrical conductivity, however, is controlled by how well the polymer can incorporate the dopant into its crystalline structure, which is in turn influenced by how well it can be swelled by the solvent used for dopant incorporation. The interplay of these effects varies in a non-monotonic way across our thiophene:selenophene copolymer series. The position and shape of the polaron absorption spectrum correlate well with the polymer crystallinity and carrier mobility, but the polaron absorption amplitude does not reflect the number of mobile carriers, precluding the use of optical spectroscopy to accurately estimate the mobile carrier concentration. Overall, we find that the degree of crystallinity of the doped films is what best correlates with conductivity, suggesting that only carriers in crystalline regions of the film, where the dopant counterions and polarons are forced apart by molecular packing constraints, produce highly mobile carriers. With this understanding, we are able to achieve conductivities in this class of materials exceeding 20 S/cm.
关键词: semiconducting polymers,conductivity,ellipsometric porosimetry,GIWAXS,solution sequential processing,valence band level,F4TCNQ,poly(3-heptylselenophene),AC Hall effect,poly(3-hexylthiophene),DSC,bandgap,chemical doping,crystallinity
更新于2025-09-04 15:30:14