- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
ZnO/Ag NANOPARTICLE-DECORATED SINGLE-WALLED CARBON NANOTUBES (SWCNTs) AND THEIR PROPERTIES
摘要: Raw single-walled carbon nanotubes (SWCNTs) were oxidized by using sulfuric acid and nitric acid at 3:1 ratio to produce oxygen functional groups attached to SWCNTs surfaces. Then, the oxidized SWCNTs are coated with zinc oxide and silver nanoparticles by chemical precipitation route to synthesize ZnO/Ag-SWCNTs nanocomposite material. The nanocomposite sample was analyzed via zeta potential analyzer, ultraviolet-visible (UV-Vis) spectrophotometer, ˉeld emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), X-ray di?raction (XRD), and Raman spectroscopy to investigate colloidal stability, optical, morphological, and structural properties. The SWCNT properties were found to be changed after the addition of ZnO/Ag nanoparticles. Hence, the new ZnO/Ag-SWCNTs nanocomposite is a good candidate for photocatalyst applications and biological applications.
关键词: biological applications,photocatalyst applications,Single-walled carbon nanotubes (SWCNTs),ZnO/Ag nanocomposite,chemical precipitation
更新于2025-09-23 15:21:01
-
Non-covalent Methods of Engineering Optical Sensors Based on Single-Walled Carbon Nanotubes
摘要: Optical sensors based on single-walled carbon nanotubes (SWCNTs) demonstrate tradeoffs that limit their use in in vivo and in vitro environments. Sensor characteristics are primarily governed by the non-covalent wrapping used to suspend the hydrophobic SWCNTs in aqueous solutions, and we herein review the advantages and disadvantages of several of these different wrappings. Sensors based on surfactant wrappings can show enhanced quantum efficiency, high stability, scalability, and diminished selectivity. Conversely, sensors based on synthetic and bio-polymer wrappings tend to show lower quantum efficiency, stability, and scalability, while demonstrating improved selectivity. Major efforts have focused on optimizing sensors based on DNA wrappings, which have intermediate properties that can be improved through synthetic modifications. Although SWCNT sensors have, to date, been mainly engineered using empirical approaches, herein we highlight alternative techniques based on iterative screening that offer a more guided approach to tuning sensor properties. These more rational techniques can yield new combinations that incorporate the advantages of the diverse nanotube wrappings available to create high performance optical sensors.
关键词: optical biosensing,non-covalent solubilization,selectivity,molecular recognition,near-infrared sensors,single-walled carbon nanotubes (SWCNTs or SWNTs),fluorescence brightness
更新于2025-09-19 17:13:59