- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Prussian Blue Nanocubesa??SnO <sub/>2</sub> Quantum Dotsa??Reduced Graphene Oxide Ternary Nanocomposite: An Efficient Nona??noblea??metal Electrocatalyst for Nona??enzymatic Detection of H <sub/>2</sub> O <sub/>2</sub>
摘要: Developing non-noble-metal electrocatalyst for non-enzymatic H2O2 sensing is highly attractive. A facile, two-step approach has been utilized for the synthesis of PBNCs/SnO2 QDs/RGO ternary nanocomposite. TEM, SEM, XPS, and XRD techniques were used to the characterize the structural and morphological properties of synthesized ternary nanocomposite. The synthesized ternary nanocomposite has been examined as an electrode material for the electrochemical detection of H2O2 using the Amperometry technique. Under optimum conditions, PBNCs/SnO2 QDs/RGO ternary nanocomposite performed very well in the electrocatalytic reduction of H2O2 with a linear dynamic range from 25-225 μM (R2 = 0.996) with a low detection limit of 71 nM (S/N=3). Compared to the recent literature, PBNCs/SnO2QDs/RGO ternary nanocomposite based modified electrode exhibit a wider linear dynamic range with a low detection limit. Furthermore, PBNCs/SnO2 QDs/RGO ternary nanocomposite based modified electrode showed an excellent anti-interference ability against various common interfering agents. The practical applicability of ternary nanocomposite based modified electrode was further extended to determine the H2O2 in tap water with acceptable recovery. The present performance of PBNCs/SnO2 QDs/RGO ternary nanocomposite material towards H2O2 sensing might widen its application for developing a new type of non-noble metal-based non-enzymatic electrochemical biosensors.
关键词: Hydrogen peroxide,Graphene,Non-enzymatic sensor,SnO2 quantum dots,Non-noble-metal electrocatalyst,Prussian blue nanocubes
更新于2025-09-23 15:21:01
-
One-pot biosynthesis of SnO2 quantum dots mediated by Clitoria ternatea flower extract for photocatalytic degradation of rhodamine B
摘要: In this study, SnO2 quantum dots (QDs) have been successfully biosynthesized using Aparajitha (Clitoria ternatea) flower extract as the green reducing agent and then used as effective photocatalysts for the degradation of rhodamine B (RhB) under UV light irradiation. Clitoria ternatea flower extract contains flavanols and flavonoids, which can serve as reducing agents to convert Sn2+ precursors into Sn° NPs, which are then oxidized to 4–10 nm SnO2 QDs at 400 °C for 2 h. A blue shift in the adsorption wavelength of biosynthesized SnO2 QDs (3.66 eV) in comparison with bulk SnO2 (3.54 eV) is obtained, which can reduce the electron–hole recombination rate of SnO2. In addition, the specific surface area of SnO2 QDs is almost two times higher than that of bulk SnO2, resulting in the acceleration of photocatalytic degradation efficiency and rate of RhB under UVB light irradiation. The photodegradation performance of RhB over SnO2 QDs is highly dependent on several parameters, including H2O2 concentration, catalyst dosage, and pH. The liquid chromatography-mass spectrometric spectra and radical scavenger experiments indicate that the hydroxyl radicals play a crucial role in photodegradation, which can undergo N-deethylation and ring cleavage reactions to produce intermediates of N, N-diethyl-N’-ethylrhodamines, dihydroxybenzoic acid, and maleic acid. Moreover, a possible reaction mechanism for RhB photodegradation over SnO2 QDs is proposed. Results obtained in this study clearly indicate that the extract is an effective bioreagent to develop the green chemistry for the one-pot synthesis of SnO2 QDs photocatalysts for the degradation of pollutants in aqueous solutions.
关键词: Rhodamine B (RhB),Clitoria ternatea flower extract,SnO2 quantum dots,Photocatalytic activity
更新于2025-09-23 15:19:57
-
Effects of annealing on bandgap and surface plasmon resonance enhancement in Au/SnO2 quantum dots
摘要: Au/SnO2 quantum dots (AuSQDs) were synthesized, and the effects of annealing on their structural and optical properties were examined. Significant changes were observed in the bandgap and surface plasmon resonance (SPR) of the AuSQDs after thermal treatment at different temperatures (400, 500, and 600 °C). The properties of the as-prepared and annealed samples were characterized via X-ray diffraction analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy, and diffuse reflectance spectroscopy. Annealing reduced the bandgap from 3.03 to 2.33 eV and increased the crystallinity while maintaining an average crystallite size below 10 nm. XPS valence band (VB) profiles provided information regarding the VB edge potentials, which helped to determine the conduction band edge potentials. An enhancement in the SPR of the Au nanoparticles was observed for AuSQD-500, which had the smallest bandgap among the samples investigated.
关键词: Annealing effect,Optical properties,Au/SnO2,Quantum dots
更新于2025-09-16 10:30:52