- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Impact of KF-post deposition treatment on Cu(In,Ga)Se2 surface and Cu(In,Ga)Se2/CdS interface sulfurization
摘要: Partial sulfurization of Cu(In,Ga)Se2 (CIGSe) absorbers contributes to enhance photovoltaic performance of chalcopyrite based solar cells. Alternatively, KF post-deposition treatment (KF-PDT) performed under Se atmosphere has recently been used to improve the efficiency of CIGSe thin film based solar cells. In this work, we study the potential sulfurization of KF-treated CIGSe during the chemical bath deposition of the CdS buffer layer. Therefore, buried interfaces between KF-PDT CIGSe under Se or S atmosphere and CdS are investigated with the help of non-destructive and depth sensitive X-ray emission spectroscopy. No CIGSe sulfurization is detected at the absorber/CdS interface when KF treatment is performed under selenium atmosphere. In contrast, when KF treatment is done under sulfur atmosphere, partial sulfurization of CIGSe is detected at the CIGSe/CdS interface. We show through X-ray photoemission spectroscopy that the CIGSe sulfurization occurs during the KF-PDT performed under sulfur atmosphere. We also demonstrate that alkali favors greatly CIGSe surface sulfurization when the chalchopyrite is exposed to sulfur atmosphere.
关键词: Cu(In,Ga)Se2,XES,KF-PDT,XPS,Interface,Sulfurization
更新于2025-09-23 15:23:52
-
Selective reduction of CO2 to CO under visible light by controlling coordination structures of CeOx-S/ZnIn2S4 hybrid catalysts
摘要: Engineering the electronic properties of heterogeneous catalysts is an important strategy to enhance their activity towards CO2 reduction. Herein, we prepared partially sulfurized cerium oxide (CeOx-S) nanoclusters with the size less than 2 nm on the surface of ZnIn2S4 layers. Surface electronic properties of CeOx-S nanoclusters are facilely modulated by cerium coordination to sulfur, inducing the emergence of abundant Ce3+ and oxygen vacancies. For the photoreduction of CO2, CeOx-S/ZnIn2S4 hybrid catalysts exhibited a CO productivity of 1.8 mmol g?1, which was twice as higher as that of ZnIn2S4 catalyst using triethylamine as a sacrificial electron donor. Further mechanistic studies reveal that the photogenerated electrons are trapped by oxygen vacancies on CeOx-S/ZnIn2S4 catalysts and subsequently transfer to CO2, benefiting the activation of CO2. Moreover, the extremely high selectivity of CO is derived from the weak adsorption of CO on the surface of CeOx-S/ZnIn2S4 catalysts.
关键词: CeOx-S Nanoclusters,CO2 photoreduction,Electronic properties,Partial sulfurization,Visible light
更新于2025-09-23 15:22:29
-
[IEEE 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII) - Berlin, Germany (2019.6.23-2019.6.27)] 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII) - In-Situ Transmission Electron Microscopy Coupled with Resonant Microcantilever for Comprehensive Evaluating Sulfurization Performance of Zinc Oxide Nanowires
摘要: This paper reports a new technique with in-situ transmission electron microscopy (in-situ TEM) and resonant microcantilever to comprehensively evaluate sulfurization performance of ZnO nanowires. Herein, in-situ TEM is used to real-time observe the sulfurization process of ZnO nanowires under SO2-contained atmosphere. temperature-varying micro-gravimetric method, thermodynamic interaction between ZnO nanowires and SO2 molecules is quantitatively evaluated by resonant microcantilever. By exposing the ZnO nanowires sample to SO2-contained atmosphere, a thick shell layer of ZnSO3 can be formed onto the surface of ZnO nanowires and a novel core-shell nanowire structure of ZnO@ZnSO3 is obtained finally. According to our comprehensive evaluation results, the ZnO nanowires sample with 100 nm diameter exhibits high reactive to SO2 molecules and is suitable for SO2 capture and storage.
关键词: sulfurization process,ZnO nanowires,thermodynamic parameter extraction,In-situ TEM
更新于2025-09-23 15:19:57
-
Growth of Cu<sub>2</sub>ZnSnS<sub>4</sub> (CZTS) thin films using short sulfurization periods
摘要: In this study CZTS thin films were grown by a two-stage process that involved sequential sputter deposition of metallic Cu, Zn, and Sn layers on Mo coated glass substrates followed by RTP annealing at 530 and 560 °C for various dwell times (1, 60, and 180 sec). CZTS thin films obtained by reaction at different sulfurization temperatures and reaction times were characterized employing XRD, Raman spectroscopy, SEM, EDX, and photoluminescence. It showed that extension of the sulfurization time provides better crystalline quality except for the CZTS560-60 thin film. SEM surface microstructure of the films displayed non-uniform, dense, and polycrystalline structure. The optical band gap of the films as determined by photoluminescence was found to be about 1.36-1.38 eV. It was observed that it is possible to obtain Cu-poor and Zn-rich CZTS thin films with short dwell time of reactions. XRD pattern and Raman spectra of the films showed formation of kesterite CZTS structure and some secondary phases such as CuS, SnS, SnS2. The full-width-at-half-maximum (FWHM) values extracted from the (112) diffraction peaks of the CZTS thin films.
关键词: Sulfurization time,Cu2ZnSnS4 (CZTS),Two-stage method,Sputtering,Sulfurization temperature,Kesterite
更新于2025-09-19 17:15:36
-
[IEEE 2019 IEEE 5th International Conference for Convergence in Technology (I2CT) - Bombay, India (2019.3.29-2019.3.31)] 2019 IEEE 5th International Conference for Convergence in Technology (I2CT) - Growth of Different Microstructure of MoS <sub/>2</sub> through Controlled Processing Parameters of Chemical Vapor Deposition Method
摘要: The anisotropic bonding in layered materials crystallize to form different structure such as smooth films, nanotubes, and fullerene-like nanoparticles. Here, the growth of different microstructure of MoS2 via chemical vapor deposition (CVD) method through controlled processing parameters is reported. Scanning electron microscopy and Raman spectroscopy ascertained the MoS2 on insulating substrate (SiO2/Si). It was observed that poor sulfur environment and slow vapor flow were unable to induce complete transition from MoO3-x to MoS2 and formed intermediate MoO2.The MoS2 and MoO2/MoS2 heterostructure were synthesized via single step. In addition, by adjustment of heating rate with temperature of centre zone and vapor flow, flower like structure of MoS2 was achieved.
关键词: Sulfurization,CVD,MoS2,Layered materials,2D materials
更新于2025-09-19 17:13:59
-
Spray pyrolysis deposited CuSbS2 absorber layers for thin-film solar cells
摘要: CuSbS2 thin films were fabricated by spray pyrolysis from metal chloride aqueous solutions, followed by a post-deposition sulfurization step. The structural, chemical, optical and electrical properties of CuSbS2 and the effect of various sulfurization temperatures on CuSbS2 thin film have been systematically studied. We used a two-step sulfurization method. Step 1 at lower temperature was to encourage complete saturation of the as-deposited film with sulfur vapor. And step 2 at higher temperature was to promote the formation and crystallization of CuSbS2. The sulfurization temperature of step 2 is very important for the formation of device-grade CuSbS2 films. With the increase in sulfurization temperature, impurities such as Sb2S3 decreased and the crystallinity of CuSbS2 improved. Until 400 °C, impurities disappeared and phase-pure well-crystallinity CuSbS2 thin films were obtained. When the sulfurization temperature is higher than 400 °C, CuSbS2 gradually changes to Cu3SbS4. The CuSbS2 films sulfurized at 400 °C with optimum band gap of 1.53 eV are p type, and absorption coefficient is larger than 105 cm?1 in the visible light wavelength range. The temperature dependence of electrical conductivity of CuSbS2 has been studied for the first time. At measurement temperatures higher than 140 K the electrical conductivity of the CuSbS2 film is dominated by band conduction and nearest neighbor hopping (NNH). However, at temperatures below 140 K the conduction is predominantly affected by variable range hopping (VRH). Finally, thin-film solar cells based on the sprayed CuSbS2 absorber layers with a maximum photoelectric conversion efficiency of 0.34% have been fabricated.
关键词: sulfurization,CuSbS2,thin-film solar cells,spray pyrolysis,electrical conductivity
更新于2025-09-16 10:30:52
-
Novel Siloxane-Modified Epoxy Resins as Promising Encapsulant for LEDs
摘要: This study investigated a new category of transparent encapsulant materials for light-emitting diodes (LEDs). It comprised a phenyl group that contained siloxane-modified epoxy (SEP-Ph) hybridized with a cyclic tetrafunctional siloxane-modified epoxy (SEP-D4) with methylhexahydrophthalic anhydride (MHHPA) as a curing agent. The SEP-Ph/SEP-D4 = 0.5/0.5 (sample 3) and SEP-D4 (sample 4) could provide notably high optical transmittance (over 90% in the visible region), high-temperature discoloration resistance, low stress, and more crucially, noteworthy sulfurization resistance. The lumen flux retention of the SEP encapsulated surface mounted device LEDs remained between approximately 97% and 99% after a sulfurization test for 240 h. The obtained comprehensive optical, mechanical, and sulfurization resistance proved the validity and uniqueness of the present design concept with complementary physical and chemical characteristics.
关键词: crosslinking density,surface mounted device LEDs,encapsulant,sulfurization resistance,siloxane-modified epoxy
更新于2025-09-16 10:30:52
-
Nano-scale sulfurization of the Cu <sub/>2</sub> ZnSnSe <sub/>4</sub> crystal surface for photovoltaic applications
摘要: The objective of this study was to find an effective method to improve VOC without JSC loss for Cu2ZnSnSe4 (CZTSe) monograin layer solar cells. Sulfurization of the surface of the kesterite absorber layer may lead to enhanced device efficiency via band gap widening at the surface. Surface sulfurization was carried out in two steps: a CdS layer was first deposited onto the CZTSe crystals by a chemical solution deposition method, and then the CdS-coated CZTSe was annealed at elevated temperature in evacuated quartz ampoules. The thickness of the sulfurized surface of CZTSe crystals was varied by adjusting the thickness of the CdS layer (from 100 nm to 200 nm) and by modifying the temperature of the annealing process from 400 to 700 °C for 60 min. SEM, EDX and Raman analysis showed that the CdS layer still existed on the surface of CZTSe crystals after annealing at 400 °C. After annealing at higher temperatures, the CdS layer disappeared and a new surface layer was formed. Annealing at 570 °C resulted in secondary phases on the surface, which are probably caused by decomposition reactions on the CZTSe crystal surface. Annealing at 700 °C formed a well-crystallized Cu2ZnSn(S, Se)4 thin layer on the surface of the CZTSe crystals, which was confirmed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The Raman peak located at 331 cm?1 provides strong evidence that a wider band gap Cu2ZnSn(S, Se)4 surface layer is formed after the sulfurization while the CdS peak at 308 cm?1 has disappeared. Compositional profiles of EDX and XPS showed that S is located in the surface layer, but Cd has diffused into the bulk of the crystal and acts as a dopant. The content of S in Cu2ZnSn(S, Se)4 depended on the CdS layer thickness.
关键词: CZTSe,band gap engineering,sulfurization,solar cells,photovoltaic applications
更新于2025-09-16 10:30:52
-
Structural and Optical Annealing Route-Dependent Properties of CZTS Thin Films Grown by One-Step Electrodeposition with Free Annealing Sulfurization for Photovoltaic Application
摘要: In the electrodeposition-anneal processes, the as-deposited ?lm presents a de?ciency of S which makes sulfurization inevitable. In this paper, an electrolyte was used for elaborating Cu2ZnSnS4 thin ?lms with free annealing sulfurization onto indium-doped tin oxide-coated glass substrates for solar cell applications. For a one-step elaboration of CZTS thin ?lms, a potentiostatic process has been adopted, and the deposition potential effect has been studied. The prepared samples were treated by annealing at different temperatures and subsequently were considered for structural and morphological properties with the aim to comprehend the growth behavior and to promote the ?lm characteristics. X-ray diffraction (XRD) patterns showed the characteristic peaks at (112), (200) and (224) planes, which correlate with a Kesterite thin ?lm structure and another phase impurity. The uniform area of the ?lm and the grain size transformation of the particles relative to annealing temperature was investigated using scanning electron microscopy and the XRD analysis. From the optical study, the gap energy Eg was enlarged with changed annealing temperature in the range of 1.7–1.48 eV.
关键词: CZTS,electrodeposition,annealing,photovoltaic,thin ?lms,free-annealing sulfurization
更新于2025-09-16 10:30:52
-
Antimony‐Doped Tin Oxide as Transparent Back Contact in Cu <sub/>2</sub> ZnSnS <sub/>4</sub> Thin‐Film Solar Cells
摘要: Antimony-doped tin oxide (Sn2O3:Sb, ATO) is investigated as a transparent back contact for Cu2ZnSnS4 (CZTS) thin-film solar cells. The stability of the ATO under different anneal conditions and the effect from ATO on CZTS absorber growth are studied. It is found that ATO directly exposed to sulfurizing anneal atmosphere reacts with S, but when covered by CZTS, it does not deteriorate when annealed at T< 550 °C. The electrical properties of ATO are even found to improve when CZTS is annealed at T= 534 °C. At T= 580 °C, it is found that ATO reacts with S and degrades. Analysis shows repeatedly that ATO affects the absorber growth as large amounts of Sn-S secondary compounds are found on the absorber surfaces. Time-resolved anneal series show that these compounds form early during anneal and evaporate with time to leave pinholes behind. Device performance can be improved by addition of Na prior to annealing. The best CZTS device on ATO back contact herein has an efficiency of 2.6%. As compared with a reference on a Mo back contact, a similar open-circuit voltage and short-circuit current density are achieved, but a lower fill factor is measured.
关键词: antimony-doped tin oxides,sulfurization,thin-film solar cells,transparent back contacts,Cu2ZnSnS4
更新于2025-09-11 14:15:04