- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
All-carbon THz components based on laser-treated diamond
摘要: We report on fs laser structuring and graphitization of diamond and experimental characterization of its THz response. A full characterization of graphitized, conductive layer generated by laser irradiation is carried out by performing scanning-electron microscopy, Raman spectroscopy and electrical measurements. The transmittance of the laser textured diamond samples, both with the graphitic overlayer and after selective oxidizing etching, is analyzed in the (0.25 ÷ 6.0) THz spectral range. A significant selective absorption of the graphitized overlayer towards polarized THz radiation is demonstrated, which is associated to the formation of graphitic laser induced periodic surface structures. This anisotropy allows conceiving compact passive metasurfaces based on conductive/dielectric patterns on the diamond plate surface for the development of robust, lightweight and broadband THz optical components.
关键词: graphitic laser induced periodic surface structures,graphitization,electrical measurements,fs laser structuring,THz response,transmittance,THz optical components,polarized THz radiation,conductive layer,diamond,Raman spectroscopy,metasurfaces
更新于2025-09-23 15:19:57
-
[IEEE 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) - Paris, France (2019.9.1-2019.9.6)] 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) - THz response of metallic structures to femtosecond laser pulses
摘要: The talk is devoted to the nonlinear effects in metallic structures (like gratings and nanoparticle arrays) irradiated by femtosecond laser pulses. Possible mechanisms of delayed THz response and specific non-quadratic nonlinear regimes of conversion are analyzed. In contrast to previous models, only low-frequency currents inside the metal are considered without involving electron emission and acceleration. Special attention is paid to the role of plasmonic resonances at optical frequency in the enhancement of low-frequency nonlinear response.
关键词: femtosecond laser pulses,plasmonic resonances,metallic structures,nonlinear effects,THz response
更新于2025-09-12 10:27:22