修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Design of novel thiazolothiazole-containing conjugated polymers for organic solar cells and modules

    摘要: One of the major challenges in the field of organic photovoltaics is associated with high-throughput manufacturing of efficient and stable organic solar cells. Practical realization of technologies for production of large-area organic solar cells requires the development of novel materials with a defined combination of properties ensuring sufficient reliability and scalability of the process in addition to good efficiency and operation stability of the devices. In this work, we designed two novel polymers comprising thiazolothiazole units and investigated their performance as absorber materials for organic solar cells and modules. Optimized small-area solar cells based on P1/[70]PCBM ([6,6]-phenyl-C71-butyric acid methyl ester) blends exhibited promising power conversion efficiency (PCE) of 7.5%, while larger area modules fabricated using slot die coating showed encouraging PCE of 4.2%. Additionally, the fabricated devices showed promising outdoor stability maintaining 60–70% of the initial efficiency after 20 sun days being exposed to natural sunlight at the Negev desert. The obtained results feature the designed polymer P1 as a promising absorber material for a large-scale production of organic solar cells under ambient conditions.

    关键词: Thiazolothiazole,Conjugated polymers,Photovoltaic modules,Organic solar cells,Slot-die coating

    更新于2025-09-23 15:19:57

  • Understanding of Imine Substitution in Wide Bandgap Polymer Donor–Induced Efficiency Enhancement in All-Polymer Solar Cells

    摘要: All-polymer solar cells (all-PSCs) are proven to possess outstanding thermal and mechanical stabilities. However, concurrently achieving appropriate phase-separated pattern, efficient charge transportation, and adequate charge transfer between donor and acceptor components is still a challenge, and thus, only a few polymer-polymer BHJ blends have yielded BHJ device PCEs >8%. Generally, polymer backbone substitutions may have a direct influence on the device performance. Thus, this report examines a set of wide bandgap polymer donor analogues composed of thienothiophene (TT) or thiazolothiazole (TTz) motif, and their all-PSC device performance with N2200. Results show that all-PSCs based on the imine-substituted derivative PBDT-TTz exhibit power conversion efficiencies (PCE) as high as 8.4%, which largely outperform the analogue PBDT-TT-based ones with PCEs of only 0.7%. This work reveals that the imine substitution in polymer backbones of PBDT-TTz not only increases the ionization potential (IP) and electron affinity (EA), narrows the optical gap (Eopt), but also has significantly impacts on the BHJ film morphologies. PBDT-TTz:N2200 BHJ blends present better miscibility, suppressed phase separation, much stronger crystallinity, and face-on ordering, which are contributed to efficient exciton dissociation, charge transportation, and therefore, high-efficiency in all-PSCs. This study demonstrates that the imine-substituted polymers composed of TTz motif, which can be easily synthesized through a facile two-step procedure, are a promising class of wide bandgap polymer donors for efficient all-PSCs.

    关键词: Imine substitution,All-polymer solar cells,Thiazolothiazole,Wide bandgap polymer donors,BHJ film morphologies

    更新于2025-09-12 10:27:22

  • A Multipurpose Conjugated Polymer: Electrochromic Device and Biosensor Construction for Glucose Detection

    摘要: First example of electrochemically polymerized thiazolothiazole containing electrochromic conducting polymer;Poly(2,5-di(furan-2-yl)thiazolo[5,4-d]thiazole) (PTTzFr) was obtained via cyclic voltammetry. The polymer structure bears furan unit as the donor and thiazolothiazole unit as the acceptor. PTTzFr film was obtained on an ITO coated glass slide and its electrochemical and optoelectronic properties were investigated. Polymeric film showed reversible redox behavior along with reversible electrochromic behavior from reddish orange to grey having a band gap value of 1.80 eV. It has fast switching times (0.3 s and 0.4 s) with high optical contrast values at visible and NIR regions (38% at 460 nm and 63% at 1225 nm). Optoelectronic device application was performed by constructing a dual type electrochromic device (ECD) with poly(3,4-ethylenedioxythiophene) (PEDOT). Resulting device showed a remarkable optical memory without changing its % transmittance value during 200 s at 450 nm. Additionally, to construct a sensing interface, in the present work, a conjugated polymer (PTTzFr) containing biosensor was constructed for the glucose analysis. The architecture showed a promising sensing system for biosensor application. For the preparation of the proposed sensor, polymer film was coated on graphite electrode surface and fabricated as a glucose biosensor with immobilization of glucose oxidase. The biosensor was successfully applied for the determination of glucose in beverage. Under optimized conditions, the proposed sensor served a low detection limit (12.8 × 10?3 mM), and high sensitivity (65.44 μAmM?1cm?2). To the best of our knowledge, a sensor design and ECD construction using electrochemically polymerized PTTzFr that shows superior properties for both systems were attempted for the first time, and this approach resulted in improved biosensor and ECD characteristics.

    关键词: thiazolothiazole containing conducting polymer,electrochromic device,electrochromic polymer,Amperometric biosensor,glucose biosensor

    更新于2025-09-10 09:29:36