- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Si-doping effect on solution-processed In-O thin-film transistors
摘要: In this work, silicon-doped indium oxide thin-film transistors (TFTs) have been fabricated for the first time by a solution processing method. By varying the Si concentration in the In2O3-SiO2 binary oxide structure up to 15 at.%, the thicknesses, densities, and crystallinity of the resulting In-Si-O (ISO) thin films were investigated by X-ray reflectivity (XRR) and X-ray diffraction techniques, while the produced TFTs were characterized by a conventional three-probe method. The results of XRR analysis revealed that the increase in the content of Si dopant increased the thickness of the produced film and reduced its density, and that all the Si-doped ISO thin films contained only a single amorphous phase even after annealing at temperatures as high as 800 °C. The manufactured ISO TFTs exhibited a reduction in the absolute value of threshold voltage VT close to 0 V and low current in the off-state, as compared to those of the non-doped indium oxide films, due to the reduced number of oxygen defects, which was consistent with the behavior of ISO TFTs fabricated by a sputtering method. The ISO TFT with a Si content of 3 at.% annealed at 400 °C demonstrated the smallest subthreshold swing of 0.5 V/dec, VT of ?5 V, mobility of 0.21 cm2/Vs, and on/off current ratio of about 2×107.
关键词: silicon-doped indium oxide,solution processing,amorphous oxide semiconductor,thin-film transistor,spin coating
更新于2025-09-23 15:21:01
-
Electrical, Structural, Optical, and Adhesive Characteristics of Aluminum-Doped Tin Oxide Thin Films for Transparent Flexible Thin-Film Transistor Applications
摘要: The properties of Al-doped SnOx films deposited via reactive co-sputtering were examined in terms of their potential applications for the fabrication of transparent and flexible electronic devices. Al 2.2-atom %-doped SnOx thin-film transistors (TFTs) exhibit improved semiconductor characteristics compared to non-doped films, with a lower sub-threshold swing of ~0.68 Vdec?1, increased on/off current ratio of ~8 × 107, threshold voltage (Vth) near 0 V, and markedly reduced (by 81%) Vth instability in air, attributable to the decrease in oxygen vacancy defects induced by the strong oxidizing potential of Al. Al-doped SnOx films maintain amorphous crystallinity, an optical transmittance of ~97%, and an adhesive strength (to a plastic substrate) of over 0.7 kgf/mm; such films are thus promising semiconductor candidates for fabrication of transparent flexible TFTs.
关键词: tin oxide,thin-film transistor,aluminum doping,adhesive property,oxide semiconductor
更新于2025-09-19 17:15:36
-
Biodegradable Materials for Organic Field-effect Transistors on a Paper Substrate
摘要: Paper-based pentacene organic thin-film transistors (OTFTs) with spin-coated gelatin (G) stacked gate dielectric layers, the Au/pentacene/G/G matrix-embedded iron (FeG)/Al/paper structure, were fabricated. The proposed composite-stacked bio-dielectric layer can be implemented using solutions with the degradable biomaterials. These materials enable a large-area printing of use-and-throw devices. Control devices (Au/pentacene/G/Al and Au/pentacene/FeG/Al structure) were also fabricated for comparison. High performance paper-based OTFT constructed from the stacked gate dielectric layer exhibited a carrier mobility of 8 cm2/Vs, on/off current ratio of approximately 103, subthreshold swing of 0.6 V/dec, and threshold voltage of ?1.4 V. These results are compatible to those OTFTs fabricated on other substrates. Therefore, the emerging biomaterial-based transistors on paper substrates may help in developing low-cost, environment-friendly devices.
关键词: paper,pentacene,gelatin,organic thin-film transistor (OTFT),solution process
更新于2025-09-19 17:15:36
-
Hybrid gate dielectrics: a comparative study between polyvinyl alcohol/ $$\hbox {SiO}_{2}$$ SiO 2 nanocomposite and pure polyvinyl alcohol thin-film transistors
摘要: Polyvinyl alcohol (PVA) thin films as polymer gate dielectrics, with and without SiO2 nanoparticles were fabricated using spin-coating. Surface roughness and hydrophilicity of PVA and PVA/SiO2 thin films were studied by contact-angle measurements and atomic force microscopy. The dielectric properties were characterized via capacitance and leakage-current measurements on metal–insulator–metal structures. In order to further investigate the application potential of such materials as a replacement for conventional inorganic dielectrics such as SiO2 in organic thin-film transistors, devices were fabricated based on these polymers using α, ω-dihexylquaterthiophene as an active layer. Performance of the devices was realized by electrical measurements and Kelvin probe force microscopy. All transistors showed hole and electron mobilities in the low-voltage range. PVA/SiO2 films showed larger capacitance, less hydrophilicity, rougher surfaces and considerable leakage currents compared with those with neat PVA. Although integrating nanoparticles modified surface electronic properties and showed a shift in surface potential as observed in Kelvin probe force measurements, it appears that non-polymeric and neat polymeric dielectric materials could still be a privilege to nanocomposite polymeric dielectrics for optoelectronic applications.
关键词: ambipolar thin-film transistor,scanning probe microscopy (SPM),surface chemistry,electrical and structural properties,Polymer dielectrics
更新于2025-09-19 17:15:36
-
Preparation and Characterization of Semi-Alicyclic Polyimide Resins and the Derived Alignment Layers for Liquid Crystal Display Technology
摘要: Uniform alignment of rigid-rod liquid crystal (LC) molecules under applied voltage is critical for achievement of high-quality display for thin-film transistor-driven liquid crystal display devices (TFT-LCDs). The polymeric components that can induce the alignment of randomly aligned LC molecules are called alignment layers (ALs). In the current work, a series of organo-soluble polyimide (SPI) ALs were designed and prepared from an alicyclic dianhydride, hydrogenated 3,3',4,4'-biphenyltetracarboxylic dianhydride (HBPDA), and various aromatic diamines, including 4,4'-methylenedianiline (MDA) for SPI-1, 4,4',5,5'-aminodianiline (NDA) for SPI-2, 3,3',5,5'-tetramethyl-4,4'-diaminodiphenylmethane (TMMDA) for SPI-3, and 3,3',5,5'-diethyl-4,4'-diaminodiphenylmethane (DMDEDA) for SPI-4. The derived SPI resins were all soluble in N-methyl-2-pyrrolidone (NMP). Four SPI alignment agents with the solid content of 6 wt.% were prepared by dissolving the SPI resins in the mixed solvent of NMP and butyl cellulose (BC) (NMP/BC = 80:20, weight ratio). Liquid crystal minicells were successfully fabricated using the developed SPI varnishes as the LC molecule alignment components. The SPI ALs showed good alignment ability for the LC molecules with the pretilt angles in the range of 1.58°–1.97°. The LC minicells exhibited good optoelectronic characteristics with voltage holding ratio (VHR) values higher than 96%. The good alignment ability of the SPI ALs is mainly attributed to the good comprehensive properties of the SPI layers, including high volume resistivity, high degree of imidization at the processing temperature (230 °C), good rubbing resistance, good thermal stability with glass transition temperatures (Tgs) higher than 260 °C, and excellent optical transparency with the transmittance higher than 97% at the wavelength of 550 nm.
关键词: alignment layer,semi-alicyclic polyimide,thin-film transistor-driven liquid crystal display device (TFT-LCD),residual direct circuit voltage,voltage holding ratio
更新于2025-09-19 17:13:59
-
[IEEE 2019 International Energy and Sustainability Conference (IESC) - Farmingdale, NY, USA (2019.10.17-2019.10.18)] 2019 International Energy and Sustainability Conference (IESC) - Methodology for the implementation of photovoltaic energy in a microgrid
摘要: A new accurate voltage-programmed pixel circuit for active-matrix organic light-emitting diode (AMOLED) displays is presented. Composed of three TFTs and one storage capacitor, the proposed pixel circuit is implemented both in a-Si and a-IGZO TFT technologies for the same pixel size for fair comparison. The simulation result for the a-Si-based design shows that, during a programming time of 90 s, the pixel circuit was able to compensate for a 3 V threshold voltage ( ) shift of the drive TFT with almost no error. In contrast, the a-IGZO-based pixel circuit, has a larger current error (of around 8%), despite its proven three-fold higher speed.
关键词: Active-matrix organic light-emitting diode (AMOLED),compensation,oxide thin-film transistor (TFT),amorphous silicon (a-Si)
更新于2025-09-19 17:13:59
-
[IEEE 2019 18th International Conference on Optical Communications and Networks (ICOCN) - Huangshan, China (2019.8.5-2019.8.8)] 2019 18th International Conference on Optical Communications and Networks (ICOCN) - Electrical degradation behavior in metal oxide thin film transistor under negative bias-illumination stress
摘要: The electrical degradation behavior in metal oxide thin film transistor (TFT) under negative bias-illumination stress (NBIS) is one of the biggest obstacles for its applications in flat panel display. In order to solve this issue, Sr and N are doped in In2O3 thin film and significantly improve the NBIS stability of In2O3 TFT. In the addition, degradation in electrical performance caused by Sr doping. The XPS of SrInON thin film is tested to prove the reduction of the oxygen vacancy. the doping of N can also reduce
关键词: negative bias-illumination stability,thin film transistor,SrInON
更新于2025-09-16 10:30:52
-
[IEEE 2019 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK) - Kyoto, Japan (2019.11.14-2019.11.15)] 2019 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK) - High reliability InGaZnO TFT by inductively coupled plasma sputtering system
摘要: The reliability of oxide semiconductor TFT and the method to lower the process temperature have become serious problems. In order to solve these problems, we have developed inductively coupled plasma sputtering equipment that can control the Radio Frequency (RF) power to generate Inductively Coupled Plasma (ICP) and the voltage applied to the sputtering target independently. Using this equipment, we can deposit high-density oxide semiconductor films at room temperature and fabricate highly reliable TFTs with them.
关键词: thin-film transistor(TFT),inductively coupled plasma (ICP) sputtering,InGaZnO (IGZO),reliability
更新于2025-09-16 10:30:52
-
Organic LED based light sensor for detection of ovarian cancer
摘要: Organic devices possess an interdisciplinary facet that can be utilized in the different fields; communication, memory devices, bio-degradable technology and sensor application owing to their robustness, light weight and low power requirements. The proposed work is focused on the development of a sensor application based on the organic LEDs for the diagnosis of ‘Ovarian Cancer’. Two organic LEDs: Multilayered OLED and triple hole block layer OLED are analyzed for utilization as light detector and light source in the sensing device for cancer detection. Multilayered OLED depicts excellent light detection qualities owing to lower electron hole recombination and it is six times better as compared to the triple hole block layer OLED. Therefore, it is used as the detector element in the sensing device. On the other hand, triple hole block layer OLED, is used as light source due to its high luminescence characteristics of 25,285 cd/m2. Further, a dual gate OTFT is used to drive the triple hole block layer OLED, which is utilized as the light source. DG OTFT in dual gate mode is 18% better compared to single gate mode. Thus DG-OTFT in dual gate mode is able to generate 18 volts at the terminals of the triple HBL OLED necessary for its operation. Thereafter, light detection is performed utilizing the OLED. Multilayered OLED depicted excellent light detecting capabilities. It is able to generate a cathode current of 29mA and 13mA at an incident wavelength of 420 and 440 nm, respectively, an essential requirement for present sensor application. Therefore, it presents a possibility to fabricate a portable fully flexible device for the screening and diagnosis of the ovarian cancer.
关键词: Ovarian Cancer,Triple Hole Block Layer (THBL) OLED,Dual Gate-Organic Thin Film Transistor (DG-OTFT),Bio-Medical Sensor,Organic Light Emitting Diode (OLED)
更新于2025-09-11 14:15:04
-
[IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Direct Laser Synthesis of Two-Dimensional Transition Metal Dichalcogenides
摘要: The emergence of nanomaterials with their often superior mechanical, electronic and optical properties compared with bulk form demands a robust technology that can synthesize, modify and pattern scalably and cost effectively. This can be fulfilled via laser processing protocols which produce such materials with both high precision and excellent spatial controllability [1]. Direct laser synthesis of nanomaterials such as graphene and nano-structured metal oxides have been explored thoroughly for a wide range of applications [2,3]. However, to date, there are only a few reports associated with the laser processing of two-dimensional transition metal dichalcogenides (2D-TMDCs) [4]. These mainly utilize laser radiation for thinning TMDC films through sublimation down to a single molecular thickness [1]. However, this top-down approach is not practical for large- area and scalable production. In addition, further processing steps such as lithographic patterning are then required for discrete device fabrication. Here we present a novel method for the local synthesis and patterning of two-dimensional MoS2 and WS2 layers. The synthesis of these materials is achieved by spatially selective, visible laser irradiation of suitable precursors coated on the surface of planar substrates under ambient, room temperature conditions. The non- exposed precursor regions are then completely removed in a single step, revealing the synthesised 2D-TMDCs. This method can produce micro-patterned films with lateral dimensions that approach the diffraction limit of the focused laser beam. An example of such laser synthesised MoS2 tracks can be seen in the optical microscopy image of Figure 1(a) where it clearly shows a well-defined micro-pattern without any precursor residue. Using this method, we have achieved local synthesis of of MoS2 and WS2 with thickness down to three molecular layers for MoS2 and monolayer WS2 on various glass and crystalline substrates. The quality and thickness of the resulting films can be tuned by modifying the precursor chemistry and laser parameters. Different microprobe and spectroscopic spectroscopy, photoluminescence spectroscopy (PL) and X-ray photoelectron spectroscopy (XPS) have been used to assess the quality and thickness of the deposited MoS2 and WS2 structures. Finally, we have demonstrated the electronic functionality of our films by fabricating a thin film transistor (TFT). The transfer characteristics (source-drain current vs gate voltage) of such a TFT using a laser-synthesised MoS2 channel is shown in Figure 1(b).
关键词: Two-Dimensional Transition Metal Dichalcogenides,WS2,MoS2,Direct Laser Synthesis,Thin Film Transistor
更新于2025-09-11 14:15:04