修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

10 条数据
?? 中文(中国)
  • Effect of Na doping on structural and optical properties in Cu2ZnSnS4 thin films synthesized by thermal evaporation method

    摘要: Quaternary chalcogenide Cu2ZnSnS4 (CZTS) compound, a potential material for application as absorber layer in thin film solar cells, is synthesized by direct melting of the constituent elements taken in stoichiometry compositions. Alkali element Na was incorporated into CZTS thin films synthesized by thermal evaporation method, in order to further improve the structural and optical properties. X-Ray diffraction (XRD), Raman spectroscopy, Energy dispersive spectrometry and optical spectrophotometry were used to characterise the phase purity and optical properties. It showed that the diffusion of Na ions is uniform in the films after annealing. XRD analysis showed that CZTS films possess polycrystalline structure with [221] preferred orientation. Na ions incorporation in CZTS thin films could improve the cristallinity, the graine size and the absorption coefficient. For CZTS: Na 5%, optical results revealed higher absorption coefficient (>105 cm-1) and direct optical band gap of 1.56 eV with p-type conductivity.

    关键词: Semiconductors,Sodium doping,Structural properties,Optical properties,Copper zinc tin sulfide,Thin films,Thermal evaporation

    更新于2025-09-23 15:23:52

  • The cost-effective deposition of ultra-thin titanium(IV) oxide passivating layers for improving photoelectrochemical activity of SnS electrodes

    摘要: The structures of tin monosulfide (SnS) with the surface modified by ultrathin titanium(IV) oxide layers for potential photoinduced water splitting were successfully fabricated. SnS thin films were deposited onto glass/Mo substrates using high vacuum evaporation (HVE) method, and then a simple and cost-effective deposition-annealing cycling process was used to prepare titanium(IV) oxide passivated SnS structures. The resulting compositional properties were studied using X-ray diffractometry (XRD), Raman spectroscopy, high resolution scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). The effects of titanium(IV) oxide layers on the photo-electrochemical (PEC) activity of fabricated p-type SnS thin-film electrodes were examined in this study. The SnS layers passivated with titanium(IV) oxide exhibited reducing the SnS-electrolyte interface resistance, increasing the photocurrent and improving the efficiency of PEC cells as deleterious reactions are inhibited. The various electrochemical methods such as current-voltage measurements, cyclic voltammetry, and electrochemical impedance spectroscopy were used to characterise and analyse SnS structures modified by titanium(IV) oxide.

    关键词: Photocathode,Solar energy,Tin sulfide,Titanium dioxide,Water splitting

    更新于2025-09-23 15:22:29

  • Dependence of pH on phase stability, optical and photoelectrical properties of SnS thin films

    摘要: This study reports the effect of pH value of the reaction solution (5, 5.8 and 6.5) on growth rate of SnS films deposited by chemical bath deposition and their characteristics such as X-ray diffraction (XRD), surface morphology, phase stability, optical and photoelectrical. XRD analysis reveals that the films exhibit an orthorhombic structure with polycrystalline nature, in addition to the presence of the secondary phase Sn2S3 at pH 6.5. Field emission scanning electron microscopy observations show the formation of nanoflowers. Raman spectra manifest the presence of Sn2S3 phase, where its peak intensity gradually reduces until disappearance with decreasing pH value from 6.5 to 5. Furthermore, the enhancement in the dark current (conductivity) value of the thin films occurs with decreasing pH value, as well as increasing in the value of photocurrent under illumination of near-infrared 750 nm. Conversely, the sensitivity value decreased with decreasing pH. Moreover, the energy gap value ranges from 1.34 to 1.51 eV with increasing pH. The as-obtained results demonstrate the key role of pH in controlling SnS films characteristics to achieve high quality films for the applications of photodetectors and solar cells.

    关键词: Phase,Raman,Tin sulfide,Sensitivity,Photodetector

    更新于2025-09-19 17:15:36

  • Enhanced solar cell performance of P3HT:PCBM by SnS nanoparticles

    摘要: In this research, un- and zinc (Zn)-doped tin sulfide (SnS) nanoparticles (NPs) were synthesized by ultrasound method and added to the active layer of ITO/PEDOT:PSS/P3HT: PCBM/Al polymer solar cells (PSCs). The structural, optical, and electrical properties due to the influence of NPs on solar cell performance were investigated. The X-ray diffraction (XRD) patterns of the NPs indicates the formation of orthorhombic polycrystalline SnS. Field emission scanning electron microscopy (FESEM) images show spherical particles with size less than 100 nm for un- and Zn-doped SnS samples. Optical analysis of the cells shows a decrease in the band gap due to the presence of un- and Zn-doped SnS NPs. Photovoltaic characterization of the samples shows that by adding NPs to the polymer film, the device performance improves significantly compared to the absence of NPs. The presence of NPs with different concentrations and structural defects affects the electro-optical properties of the samples.

    关键词: P3HT:PCBM,Polymer solar cells,Tin sulfide nanoparticles,Physical properties

    更新于2025-09-19 17:13:59

  • Effect of working pressure on the properties of RF sputtered SnS thin films and photovoltaic performance of SnS-based solar cells

    摘要: Tin sulfide (SnS) thin films were deposited with a single SnS target by radio frequency magnetron sputtering while varying the working pressure (0.6 Pa to 2.6 Pa), and the structural, chemical, electricelectrical and optical properties of the SnS thin films were investigated. X-ray diffraction results showed that all the SnS thin films had a (111) plane preferred growth orientation, and X-ray photoelectron spectroscopy verified that a SnS thin film was grown with an orthorhombic crystal structure, having the binding energy of 324.5 eV. Due to a long wavelength shift in the transmittance spectrum, the optical band gap decreased from 1.56 eV to 1.47 eV. A SnS-based conventional structure solar cell (Al/ITO/i-ZnO/CdS/SnS/Mo/SLG), prepared with a SnS absorption layer and deposited at a working pressure of 2.0 Pa, achieves the highest power conversion efficiency of 0.58%. It is confirmed that this result reveal to very high efficiency compared to other reports with conventional structure.

    关键词: thin films,Tin sulfide,radio frequency magnetron sputtering,single target,SnS based solar cells,working pressure

    更新于2025-09-19 17:13:59

  • <i>In-situ</i> Biomineralization of Cu <sub/>x</sub> Zn <sub/>y</sub> Sn <sub/>z</sub> S <sub/>4</sub> Nanocrystals within TiO <sub/>2</sub> -based Quantum Dot Sensitized Solar Cell Anodes

    摘要: CuZnSnS (CZTS) quantum dots (QDs) have potential application in quantum dot sensitized solar cells (QDSSCs); however, traditional synthesis approaches typically require elevated temperatures, expensive precursors, and organic solvents that can hinder large scale application. Herein we develop and utilize an enzymatic, aqueous phase, ambient temperature route to prepare CZTS nanocrystals with good compositional control. Nanoparticle synthesis occurs in a minimal buffered solution containing only the enzyme, metal chloride and acetate salts, and L-cysteine as a capping agent and sulfur source. Beyond isolated nanocrystal synthesis, we further demonstrate biomineralization of these particles within a preformed mesoporous TiO2 anode template where the formed nanocrystals bind to the TiO2 surface. This in-situ biomineralization approach facilitates enhanced distribution of the nanocrystals in the anode and, through this, enhanced QDSSC performance.

    关键词: Copper Zinc Tin Sulfide,Quantum Dot Sensitized Solar Calls (QDSSC),Nanocrystals,Green Synthesis,Quantum Dots,Biomineralization

    更新于2025-09-12 10:27:22

  • Thin film Sn2S3 via chemical deposition and controlled heating - its prospects as a solar cell absorber

    摘要: As a semiconductor of “earth-abundant” elements, Sn2S3 with a bandgap (Eg) close to 1 eV merits attention, but a method to prepare phase-pure thin film remains elusive. We report the formation of Sn2S3 thin film of 360 nm in thickness by heating chemically deposited tin sulfide thin films at 450 oC during 30 – 45 min in presence of sulfur at a pressure, 75 Torr of nitrogen. Energy dispersive x-ray emission spectra and grazing incidence x-ray diffraction established a reaction route for this conversion of SnS completely to Sn2S3 via an intermediate phase, SnS2. The optical bandgap of the material is 1.25 eV (indirect) and 1.75 eV (direct, forbidden). The optical absorption suggests a light-generated current density of 30 mA/cm2 for the Sn2S3 film (360 nm) as a solar cell absorber. Thin film Sn2S3 formed in 30 min heating has a p-type electrical conductivity in the dark of 1x10–4 Ω–1 cm–1, which increases to 3x10–4 Ω–1 cm–1 in 0.2 s under 800 W/m2 tungsten-halogen illumination. An estimate made for its mobility-lifetime product is, 6x10–6 cm2 V–1. We discuss the prospects of this material for solar cells.

    关键词: SnS-CUB,Sn2S3,semiconductor thin film,chemical deposition,energy conversion,ottemannite,cubic tin sulfide,renewable energy,optical and electrical properties,solar cells

    更新于2025-09-11 14:15:04

  • Structural, morphological and optical properties of Cu2ZnxFe1-xSnS4 thin films grown by thermal evaporation

    摘要: In this study, Cu2ZnxFe1-xSnS4 (CZFTS) (0≤x≤1) thin films were grown under vacuum evaporation on unheated glass substrates followed by sulfurization at 400 °C. The effects of sulfurization on the structural, morphological and optical properties were investigated for CZFTS material by varying Fe content. Crystal structure and phase of CZFTS thin films were analyzed by X-ray diffraction technique and Raman spectroscopy. In addition, the elemental composition and the stoichiometry of films were studied using energy dispersive spectroscopy. Surface morphology of samples was examined by scanning electron microscopy. Optical properties such as absorption coefficient, and gap energies were determined by the measurement of transmittance and reflectance in the spectral range 300-1800 nm. X-ray analysis indicates that all sulfurized CZFTS films present a polycrystalline nature and exhibit a preferential orientation along (112) plane. Cu2FeSnS4 (x=0) and Cu2ZnSnS4 (x=1) crystallize in stannite structure with I-42m and kesterite structure with I-4 space group, respectively. Raman analysis and elemental composition confirm that only the Cu2ZnSnS4 (x=1) and CZ0.75F0.25TS (x=0.75) phases are present with good crystallinity. Transmittance and reflectance spectra revealed that the films are homogenous mostly for x=0.75 and 1. Structural and optical parameters like crystallite size, absorption coefficient and band gaps were estimated for all the x values.

    关键词: Sulfurization,Scanning electron microscopy,X-ray diffraction,Copper zinc iron tin sulfide,Evaporation,Thin films

    更新于2025-09-09 09:28:46

  • Investigation of photoelectrochemical activity of cobalt tin sulfide synthesized via microwave-assisted and solvothermal process

    摘要: Highly active cobalt tin sulfides (CTS) nanocomposite have been prepared in a short time at 70 oC by using microwave-assisted process and solvothermal synthesis process. According to improve the activity, cobalt tin acetate hydroxide prepared using microwave treatment is used for the preparation of CTS in both synthetic methods. The resultant product has been characterized using X-ray diffraction, transmission electron microscope (TEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and photoelectrochemical analysis. The Microwave processed cobalt tin sulfides (MW-CTS) nanocomposite offers less size of 180 nm while comparing with solvothermal based CTS (ST-CTS). Also, possess a high surface area of 464.54 m2g-1 without much aggregation due to the uniform heating and more reaction time. Moreover, the CTS synthesized by microwave method offers higher catalytic activity than obtained from the solvothermal process, owing to smaller size, high surface area, enhanced charge transfer rate with high optical absorption plays a vital role in governing the photoelectrochemical properties.

    关键词: nanocomposites,photoelectrochemical,solvothermal,microwave-assisted,Cobalt tin sulfide

    更新于2025-09-09 09:28:46

  • Effect of defects and secondary phases in Cu2ZnSnS4 absorber material on the performance of Zn(O,S) buffered devices

    摘要: Copper zinc tin sulfide (CZTS) absorber layer attracts so much attention in photovoltaic industry since it contains earth abundant, low cost and non-toxic elements contrary to other chalcogenide based solar cells. In the present work, CZTS absorber layers were prepared following a two-stage process: firstly, a stack of metal precursors (Copper (Cu) / Tin (Sn) / Zinc (Zn) / Copper (Cu)) were deposited on molybdenum (Mo) substrate by magnetron sputtering, then this stack was annealed under S atmosphere inside a tubular furnace. CZTS thin films were investigated using energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. The effect of sulfurization time and the thickness of top and bottom Cu layer in precursors on the properties of CZTS thin films were investigated. The importance of Cu thickness adjacent to Sn to avoid detrimental phases was addressed. The significance of sulfurization time to restrict the Sn and Zn losses, formation of oxides such as tin dioxide and zinc oxide, and formation of molybdenum disulfide and voids between Mo/CZTS interface was also addressed. Moreover, cadmium sulfide buffer layer, which is conventionally used in CZTS solar cells, is replaced by an environmentally friendly alternative zinc oxysulfide buffer layer.

    关键词: Magnetron sputtering,Zinc oxysulfide,Copper zinc tin sulfide,buffer layer,absorber layer

    更新于2025-09-09 09:28:46