- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Strongly Coupled Coherent Phonons in Single-Layer MoS <sub/>2</sub>
摘要: We present a transient absorption setup combining broadband detection over the visible-UV range with high temporal resolution (~20fs) which is ideally suited to trigger and detect vibrational coherences in different classes of materials. We generate and detect coherent phonons (CPs) in single layer (1L) MoS2, as a representative semiconducting 1L-Transition Metal Dichalcogenide (TMD), where the confined dynamical interaction between excitons and phonons is unexplored. The coherent oscillatory motion of the out-of-plane A'1 phonons, triggered by the ultrashort laser pulses, dynamically modulates the excitonic resonances on a timescale of few tens fs. We observe an enhancement by almost two orders of magnitude of the CP amplitude when detected in resonance with the C exciton peak, combined with a resonant enhancement of CP generation efficiency. Ab Initio calculations of the change in 1L-MoS2 band structure induced by the A'1 phonon displacement confirm a strong coupling with the C exciton. The resonant behavior of the CP amplitude follows the same spectral profile of the calculated Raman susceptibility tensor. These results explain the CP generation process in 1L-TMDs and demonstrates that CP excitation in 1L-MoS2 can be described as a Raman-like scattering process.
关键词: exciton-phonon interaction,Coherent phonons,transient absorption spectroscopy,transition metal dichalcogenides,ab-initio calculation
更新于2025-09-23 15:21:01
-
Ultrafast Interfacial Charge Transfer of Cesium Lead Halide Perovskite Films CsPbX3 (X = Cl, Br, I) with Different Halogen Mixing
摘要: Understanding the interfacial charge transfer of the photoinduced transients of all-inorganic cesium lead halide perovskites (CsPbX3; X = Cl, Br, I) is critical for their photovoltaic applications. Ultrafast dynamics can provide comprehensive information about the transient behavior of the carriers and their transfer mechanism in the materials. In this work, the interfacial charge transfer of CsPbX3 films assembled with TiO2 with different halogen doping ratios was studied using femtosecond transient absorption (TA) spectroscopy combined with global analysis. Four subsequent decay processes after photoexcitation were obtained, including hot carrier cooling, free exciton forming, electron transfer, and charge recombination. The results indicate that the time constant of the interfacial electron transfer varies with the location of the trap state of these perovskites and the relative energy of CBs in the perovskite and TiO2 and that the time constant of the charge recombination can be attributed to the electron–hole interactions. These interpretations are supported by calculations based on first-principles density functional theory (DFT). Greater iodine doping in such perovskite CsPbX3/TiO2 systems increases the time constants of the electron transfer and charge recombination, which suggests that all-inorganic perovskite CsPbX3 with a high iodine content is favorable for improving the power conversion efficiency of solar cells.
关键词: cesium lead halide perovskite,transient absorption,global analysis,interfacial charge transfer
更新于2025-09-23 15:21:01
-
Strong pH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue
摘要: Near-infrared (NIR)-driven rhodopsins are of great interest in optogenetics and other optobiotechnological developments such as artificial photosynthesis and deep-tissue voltage imaging. Here we report the proton pump proteorhodopsin (PR) containing a NIR-active retinal analogue (PR:MMAR) exhibits intense NIR fluorescence at a quantum yield of 3.3%. This is 130 times higher than native PR (Lenz, M. O.; et al. Biophys J. 2006, 91, 255?262) and 3?8 times higher than the QuasAr and PROPS voltage sensors (Kralj, J.; et al. Science 2011, 333, 345?348; Hochbaum, D. R.; et al. Nat. Methods 2014, 11, 825?833). The NIR fluorescence strongly depends on the pH in the range of 6?8.5, suggesting potential application of MMAR-binding proteins as ultrasensitive NIR-driven pH and/or voltage sensors. Femtosecond transient absorption spectroscopy showed that upon near-IR excitation, PR:MMAR features an unusually long fluorescence lifetime of 310 ps and the absence of isomerized photoproducts, consistent with the high fluorescence quantum yield. Stimulated Raman analysis indicates that the NIR-absorbing species develops upon protonation of a conserved aspartate, which promotes charge delocalization and bond length leveling due to an additional methylamino group in MMAR, in essence providing a secondary protonated Schiff base. This results in much smaller bond length alteration along the conjugated backbone, thereby conferring significant single-bond character to the C13C14 bond and structural deformation of the chromophore, which interferes with photoinduced isomerization and extends the lifetime for fluorescence. Hence, our studies allow for a molecular understanding of the relation between absorption/emission wavelength, isomerization, and fluorescence in PR:MMAR. As acidification enhances the resonance state, this explains the strong pH dependence of the NIR emission.
关键词: stimulated Raman analysis,fluorescence,voltage sensor,rhodopsins,optogenetics,artificial photosynthesis,proteorhodopsin,femtosecond transient absorption spectroscopy,pH sensor,Near-infrared,voltage imaging
更新于2025-09-23 15:21:01
-
Attosecond transient-absorption spectroscopy of polar molecules
摘要: We apply attosecond transient absorption spectroscopy (ATAS) to explore the effects of a nonzero permanent dipole on electron dynamics at the subfemtosecond scale, exemplified in the polar LiF molecule. In contrast with nonpolar systems, a familiar feature of the ATA spectra—the light-induced structures—are observed adjacent to a bright state. Moreover, a previously unobserved ladder structure is identified. The observations are analyzed in the context of a model based on fixed-nuclei adiabatic states, supported by full numerical simulations. Analytic calculations originating in the adiabatic model shed light on the nature and origins of the findings.
关键词: LiF molecule,attosecond transient absorption spectroscopy,electron dynamics,polar molecules,ladder structure,light-induced structures
更新于2025-09-23 15:21:01
-
Many-particle excitations in non-covalently doped single-walled carbon nanotubes
摘要: Doping of single-walled carbon nanotubes leads to the formation of new energy levels which are able to participate in optical processes. Here, we investigate (6,5)-single walled carbon nanotubes doped in a solution of hydrochloric acid using optical absorption, photoluminescence, and pump-probe transient absorption techniques. We find that, beyond a certain level of doping, the optical spectra of such nanotubes exhibit the spectral features related to two doping-induced levels, which we assign to a localized exciton X and a trion T, appearing in addition to an ordinary exciton E1. We evaluate the formation and relaxation kinetics of respective states and demonstrate that the kinetics difference between E1 and X energy levels perfectly matches the kinetics of the state T. This original finding evidences the formation of trions through nonradiative relaxation via the X level, rather than via a direct optical excitation from the ground energy state of nanotubes.
关键词: exciton,doping,optical absorption,pump-probe transient absorption,photoluminescence,trion,single-walled carbon nanotubes
更新于2025-09-23 15:19:57
-
On the determination of absorption cross section of colloidal lead halide perovskite quantum dots
摘要: The absorption cross section of lead halide perovskite nanocrystals is important for understanding their photophysical properties, especially those depending on the density of photoexcited charge carriers. Despite its importance, there are large discrepancies among the reported absorption cross section values determined employing different methods. Here, we measured the absorption cross section of CsPbBr3 quantum dots (QDs) of varying sizes using elemental analysis and transient absorption (TA) saturation methods and compared with the previously reported values determined from elemental analysis and transient photoluminescence (PL) saturation methods. A careful comparison indicates that the reliable absorption cross section of lead halide perovskite QDs is obtained from both elemental analysis and TA saturation methods, while many previously reported values determined from the PL saturation method underestimate the absorption cross section.
关键词: quantum dots,absorption cross section,photoluminescence,transient absorption,lead halide perovskite
更新于2025-09-23 15:19:57
-
Deepa??Blue Thiophenea??Based Steric Oligomers as a Lowa??Threshold Laser Gain and Host Material
摘要: Thiophene-based (Th-based) derivatives have received wide attentions in organic optoelectronics due to their excellent and tuneable optoelectrical properties as well as chemical modification. However, the low photoluminescence quantum yield in solid state limits their application in solution-processed light-emitting optoelectronic devices, especially in organic lasers. Herein, a novel blue-emitting steric Th-based fluorophore (MC8-Th) with excellent optical gain behavior for organic laser is reported. Interestingly, MC8-Th neat film exhibits efficient exceptional deep-blue amplified spontaneous emission (ASE) behavior with a remarkably low threshold of 6.0 μJ cm?2 and full-width-at-half-maximum value of 2.6 nm. Furthermore, random laser signals are also obtained with the lowest threshold of 4.1 μJ cm?2 when incorporating the compound into an inert polystyrene (PS) matrix. In addition, low threshold (16 μJ cm?2, fivefold lower than those of F8BT neat films) yellow–green ASE emission (560 nm) is achieved through F?rster resonance energy transfer. Meanwhile, ultrafast transient absorption spectroscopy is deployed here to observe the single-molecular excitonic behavior in solution and PS-blend, intermolecular excited state in neat film, and efficient energy transfer in MC8-Th:F8BT-blend films. As far as known, MC8-Th shows lower threshold ASE/lasing behavior for the Th-based conjugated materials.
关键词: transient absorption spectroscopy,optical gain behavior,organic laser,thiophene-based derivatives,F?rster resonance energy transfer
更新于2025-09-23 15:19:57
-
Quantification of Photophysical Processes in Alla??Polymer Bulk Heterojunction Solar Cells
摘要: Combined data of transient optical and electro-optical experiments reveals the efficiency-determining processes in all-polymer solar cells and allows precisely quantifying their yields. For the test system presented here, field-dependent charge separation is shown to limit the fill factor and thus the performance by comparing the experimentally-measured current-voltage characteristics to those reproduced by drift-diffusion simulations using the spectroscopically-determined kinetic parameters.
关键词: all-polymer solar cells,bulk heterojunction,non-fullerene acceptors,transient absorption,organic photovoltaics
更新于2025-09-23 15:19:57
-
Strong Spin-Selective Optical Stark Effect in Lead Halide Perovskite Quantum Dots
摘要: The optical Stark effect (OSE) stems from a coherent, nonlinear interaction between a transition and a non-resonant light field, which usually causes a blue-shift of the transition energy. This shift can be understood using the picture of so-called photon-dressed states or Floquet states. The perturbation induced by a light filed which is periodical in time results in a series of quasi-static Floquet eigenstates periodically spaced in units of the photon energy. The repulsion (hybridization) between the Floquet and equilibrium states causes a blueshift of the transition between the equilibrium states, as schematically shown in Fig. 1a. The OSE effect is intrinsically helicity-selective, that is, a left circularly polarized light couples only to the |0> to |+1> but not the |0> to |-1> transition and vice versa (the number in the ket is the azimuthal quantum number of the total angular momentum). Experimentally, the OSE can be conveniently observed using circularly polarized transient absorption (TA) spectroscopy. With a co-circularly polarized pump-probe configuration, the probe pulse measures a blue-shifted transition in the duration of the pump pulse and a derivative-like difference spectrum (with respect to the unpumped spectrum) can be detected (Fig. 1b), whereas with a counter-circularly polarized configuration nothing can be detected if multi-photon absorption is negligible.
关键词: transient absorption spectroscopy,optical Stark effect,spin-selective,lead halide perovskite,quantum dots
更新于2025-09-23 15:19:57
-
Delocalization boosts charge separation in organic solar cells
摘要: Organic solar cells (OSCs) utilizing π-conjugated polymers have attracted widespread interest over the past three decades because of their potential advantages, including low weight, thin film flexibility, and low-cost manufacturing. However, their power conversion efficiency (PCE) has been far below that of inorganic analogs. Geminate recombination of charge transfer excitons is a major loss process in OSCs. This paper reviews our recent progress in using transient absorption spectroscopy to understand geminate recombination in bulk heterojunction OSCs, including the impact of polymer crystallinity on charge generation and dissociation mechanisms in nonfullerene acceptor-based OSCs. The first example of a high PCE with a small photon energy loss is also presented. The importance of delocalization of the charge wave function to suppress geminate recombination is highlighted by this focus review.
关键词: Polymer crystallinity,Power conversion efficiency,Organic solar cells,Transient absorption spectroscopy,Dissociation mechanisms,Photon energy loss,π-conjugated polymers,Charge generation,Nonfullerene acceptor,Geminate recombination
更新于2025-09-23 15:19:57