修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

8 条数据
?? 中文(中国)
  • Suppressed Interdiffusion and Degradation in Flexible and Transparent Metal Electrode-Based Perovskite Solar Cells with a Graphene Interlayer

    摘要: Metal-based transparent conductive electrodes (TCEs) are attractive candidates for application in indium tin oxide (ITO)-free solar cells due to their excellent electrical conductivity and cost effectiveness. In perovskite solar cells (PSCs), metal-induced degradation with the perovskite layer leads to various detrimental effects, deteriorating the device performance and stability. Here, we introduce a novel flexible hybrid TCE consisting of a Cu grid-embedded polyimide film and a graphene capping layer, named GCEP, which exhibits excellent mechanical and chemical stability as well as desirable optoelectrical properties. We demonstrated the critical role of graphene as a protection layer to prevent metal-induced degradation and halide diffusion between the electrode and perovskite layer; the performance of the flexible PSCs fabricated with GCEP was comparable to that of their rigid ITO-based counterparts and also exhibited outstanding mechanical and chemical stability. This work provides an effective strategy to design mechanically and chemically robust ITO-free metal-assisted TCE platforms in PSCs.

    关键词: metal-induced degradation,perovskite solar cell,Flexibility,graphene,transparent conductive electrode

    更新于2025-09-23 15:21:01

  • Junction Welding Techniques for Metal Nanowire Network Electrodes

    摘要: Transparent conductive electrodes (TCEs), which offer advantages of high electrical conductivity and optical transparency, are essential components of practical high-tech optoelectronics such as touch panels, e-papers, organic light-emitting diodes, and solar cells. Solution-processed Ag nanowires (AgNWs) have been considered as a practical alternative TCE material suitable for industrial-scale mass production. However, the contact resistance at AgNW junctions strongly affects the total sheet resistance of AgNW electrodes. In recent years, various welding techniques for AgNW network electrodes have been developed with the aim of decreasing their sheet resistance while maintaining their optical transmittance. In this paper, we present a review of various welding methods such as thermal-mechanical welding, light welding, chemical welding, and metal-plating welding.

    关键词: silver nanowire,transparent conductive electrode,welding,sheet resistance,optical transmittance

    更新于2025-09-19 17:15:36

  • Highly transparent and conductive oxide-metal-oxide electrodes optimized at the percolation thickness of AgOx for transparent silicon thin-film solar cells

    摘要: Highly transparent and conductive oxide-metal-oxide (OMO) electrodes comprising aluminum-doped zinc-oxide (AZO) and ultrathin Ag or oxygen (O2)-doped Ag (AgOx) metal layers were fabricated for use in thin-film silicon solar cells. The surface morphologies of the metal layers and the transparencies and conductivities of OMO electrodes were investigated near the percolation thickness values of the metal layers. The percolation metal thickness, which means the metal layer is morphologically continuous, could be used to optimize the transparent OMO electrode. Additionally, thin Ag-based OMO (AgOx OMO) with superior performance could be fabricated by adding O2. The optimized AgOx OMO electrodes yielded the highest average transmittance (Tavg) of 93.5% and the lowest average optical loss (OLavg) of 1.01% within 500–800 nm at the percolation thickness of ~6 nm, thus, maintaining low conductivity. These outcomes were superior to the responses of the percolated Ag OMO (Tavg = 87.2%; OLavg = 1.01%). Using the OMO structure at the rear electrode, transparent hydrogenated amorphous silicon thin-film solar was fabricated for building integrated photovoltaic windows. The best figure-of-merit (FOM; equal to the product of Tavg and efficiency η) values of the OMO-based transparent solar cells could be obtained for percolated OMO structures. The cells using AgOx OMO (AgOx cells) performed better than the Ag cells; the best FOMs of AgOx and Ag cells were 140.8 (Tavg = 27.8%; η = 5.51%) and 104.6% (Tavg = 18.9%; η = 5.54%), respectively. These results could contribute to the development of high-performance transparent solar cells or optoelectronic devices.

    关键词: Oxygen-doped silver,Oxide/metal/oxide,Transparent conductive electrode,Transparent solar cell,Thin-film silicon solar cell

    更新于2025-09-19 17:13:59

  • Facile Fabrication of Highly Conductive, Ultra-Smooth and Flexible Silver Nanowire Electrode for Organic Optoelectronic Devices

    摘要: So far, one of the fundamental limitations of silver nanowires is the high contact resistance among their junctions. Moreover, a rough surface due to its random arrangement is inevitable to electrical short when the nanowire-based electronics is driving. To improve the contact resistance, we suggest the particle-shape nanocrystals are intentionally reduced at the junctions by a localized Joule-heat reduction approach from the silver ions. Via localized reductions, the reduced nanoparticles effectively weld the junction’s areas resulting in a 19% decrease in sheet resistance to 9.9 ?sq-1. Besides, the nanowires are embedded into a polyamide film with a gentle hot pressing. Consequently, the roughness was considerably dropped so that it was successful to demonstrate OLEDs (organic light-emitting diodes) with nanowires, which was beneficial to be laminated with OLEDs under the low temperature. The experimental results show the Ag NW embedding films reach 10.9?sq-1 of the sheet resistance at 92% transmittance and the roughness was only 1.92nm.

    关键词: embedding,transferring,joule-heat reduction,smooth surface,silver nanowire,transparent conductive electrode

    更新于2025-09-19 17:13:59

  • New dielectric/metal/dielectric electrode for organic photovoltaic cells using Cu:Al alloy as metal

    摘要: Given the rapidly increasing demand for flexible and inexpensive optoelectronic devices, it is necessary to find a substitute for ITO (Indium Tin Oxide). Among the considered alternatives, we have chosen in the present work Dielectric/Metal/Dielectric (D/M/D) trilayer structures deposited under vacuum. In these D/M/D structures, when Ag is the metal, highly performing and stable Transparent Conductive Electrodes (TCEs) are obtained. When Ag is replaced by Cu, which is far less expensive, results are not similar due to the tendency of Cu to diffuse into the transition metal oxides. Therefore we improve the stability of the new TCEs by using the Cu alloy Cu:Ag in ZnS/M/WO3 structures. The best results were obtained when M = Cu:Ag (16 nm)/Ag (1 nm). Flexible and quite stable TCEs were obtained. These new TCEs are conductive and transparent with a figure of merit of 6.5 x 10-3?-1 and a quite small Root Mean Squared Roughnessis (RMS = 1.1 nm). Therefore, they were introduced as anode in organic photovoltaic cells (OPVs). In the same time, ZnS/Ag/TiO2 TCE were probed. These ZnS/Ag/TiO2 structures were transparent and conductive with optical and electrical performances similar to those of ITO, but, when used as anode, the OPVs performances were limited by the presence of Ag at the surface of the structures. In the other hand, the results obtained with ZnS/M/WO3 structures were very promising with an open circuit voltage, Voc, and a short circuit current, Jsc, whose values are slightly higher than those obtained with ITO. Nevertheless the fill factor FF is sensibly smaller, which is attributed to the presence of some Cu at the surface of the electrode.

    关键词: Cu:Ag alloy,Transparent conductive electrode,organic photovoltaic cells,dielectric-metal-dielectric structures,Indium free electrode

    更新于2025-09-16 10:30:52

  • Preparation of Transparent Conductive Electrode via Layer-By-Layer Deposition of Silver Nanowires and Its Application in Organic Photovoltaic Device

    摘要: Solution processed transparent conductive electrodes (TCEs) were fabricated via layer-by-layer (LBL) deposition of silver nanowires (AgNWs). First, the AgNWs were coated on (3-Mercaptopropyl)trimethoxysilane modified glass substrates. Then, multilayer AgNW films were obtained by using 1,3-propanedithiol as a linker via LBL deposition, which made it possible to control the optical transmittance and sheet resistance of multilayer thin films. Next, thermal annealing of AgNW films was performed in order to agent their electrical conductivity. AgNW monolayer films were characterized by UV-Vis spectrometer, field emission scanning electron microscopy, optical microscopy, atomic force microscopy and sheet resistance measurement by four-point probe method. The high performances were achieved with multilayer films, which provided sheet resistances of 9 ?/sq, 11 ?/sq with optical transmittances of 71%, 70% at 550 nm, which are comparable to commercial indium tin oxide (ITO) electrodes. Finally, an organic photovoltaic device was fabricated on the AgNW multilayer electrodes for demonstration purpose, which exhibited power conversion efficiency of 1.1%.

    关键词: silver nanowires,layer by layer deposition,organic photovoltaics,transparent conductive electrode

    更新于2025-09-16 10:30:52

  • Promising Hybrid Graphene-Silver Nanowire Composite Electrode for Flexible Organic Light-Emitting Diodes

    摘要: Thanks to its high transparency, high carrier mobility, and thermal conductivity, graphene is often used as transparent conductive electrode (TCE) in optoelectronic devices. However, the low carrier concentration and high resistance caused by vacancy defects, grain boundaries, and superposed folds in typical graphene films limit its application. In this study, we propose a method to increase both the conductivity and carrier concentration in single-layer graphene (SLG) by blending it with silver nanowires (AgNWs). AgNWs provide connections between grain boundaries of graphene to improve charge-carrier transport. The AgNWs in this study can reduce the resistance of SLG from 650 Ω/? to 27 Ω/? yet still maintain a transmittance of 86.7% (at 550 nm). Flexible organic light-emitting diode, with a maximum 15000 cd m?2 luminance was successfully fabricated using such graphene and AgNWs composite transparent electrodes.

    关键词: Silver nanowires,Graphene,Transparent conductive electrode,Optoelectronic devices,Flexible OLED

    更新于2025-09-11 14:15:04

  • Spray Deposition of Ag Nanowire–Graphene Oxide Hybrid Electrodes for Flexible Polymer–Dispersed Liquid Crystal Displays

    摘要: We investigated the effect of different spray-coating parameters on the electro-optical properties of Ag nanowires (NWs). Highly transparent and conductive Ag NW–graphene oxide (GO) hybrid electrodes were fabricated by using the spray-coating technique. The Ag NW percolation network was modi?ed with GO and this led to a reduced sheet resistance of the Ag NW–GO electrode as the result of a decrease in the inter-nanowire contact resistance. Although electrical conductivity and optical transmittance of the Ag NW electrodes have a trade-off relationship, Ag NW–GO hybrid electrodes exhibited signi?cantly improved sheet resistance and slightly decreased transmittance compared to Ag NW electrodes. Ag NW–GO hybrid electrodes were integrated into smart windows based on polymer-dispersed liquid crystals (PDLCs) for the ?rst time. Experimental results showed that the electro-optical properties of the PDLCs based on Ag NW–GO electrodes were superior when compared to those of PDLCs based on only Ag NW electrodes. This study revealed that the hybrid Ag NW–GO electrode is a promising material for manufacturing the large-area ?exible indium tin oxide (ITO)-free PDLCs.

    关键词: polymer-dispersed liquid crystal,graphene oxide,silver nanowire,smart window,hybrid transparent conductive electrode

    更新于2025-09-10 09:29:36