- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Two-dimensional Kagome Lattices Made of Hetero Triangulenes are Dirac Semimetals or Single-Band Semiconductors
摘要: Here we discuss, based on first-principles calculations, two-dimensional (2D) kagome lattices composed of polymerized hetero-triangulene units, planar molecules with D3h point group containing a B, C or N center atom and CH2, O or CO bridges. We explore the design principles for a functional lattice made of 2D polymers, which involves control of π-conjugation and electronic structure of the knots. The former is achieved by the chemical potential of the bridge groups, while the latter is controlled by the heteroatom. The resulting 2D kagome polymers have a characteristic electronic structure with a Dirac band sandwiched by two flat bands and are either Dirac semimetals (C center), or single-band semiconductors - materials with either exclusively electrons (B center) or holes (N center) as charge carriers of very high mobility, reaching values of up to ~8×103 cm2V-1s-1, which is comparable to crystalline silicon.
关键词: high mobility,charge carriers,single-band semiconductors,hetero-triangulene units,Dirac semimetals,two-dimensional kagome lattices
更新于2025-09-23 15:21:21
-
[NanoScience and Technology] Silicene (Prediction, Synthesis, Application) || Optical Properties of Silicene and Related Materials from First Principles
摘要: Slightly buckled, graphene-like honeycomb crystals made by silicon, silicene, or by other group-IV elements such as germanene and stanene represent atomically thin films, i.e., two-dimensional (2D) systems. The theoretical description of their optical properties suffers from three difficulties, (i) a thickness much smaller than the wavelength of light, (ii) their common modeling by superlattice arrangements with sufficiently large layer distances, and (iii) the inclusion of many-body effects. Here, the solutions of all problems are discussed. (i) The optical response of an individual honeycomb crystal is described by a tensor of 2D optical conductivities or dielectric functions, which are related to the optical response of the corresponding superlattice. (ii) The influence of such a sheet crystal on the transmittance, reflectance and absorbance of a layer system is described. (iii) Excitonic and quasiparticle effects are demonstrated to widely cancel each other. Silicene sheets are investigated in detail. As a consequence of the linear bands and Dirac cones the low-frequency absorbance is defined by the Sommerfeld finestructure constant. Van Hove singularities represented by critical points in the interband structure are identified at higher photon energies. Clear chemical trends along the row C → Si → Ge → Sn are derived. The influence of multiple layers is studied for the cases of bilayer silicene and graphene.
关键词: silicene,optical properties,many-body effects,two-dimensional materials,first principles,Van Hove singularities,stanene,Dirac cones,germanene
更新于2025-09-23 15:21:21
-
Highly conductive two-dimensional electron gas at the interface of Al2O3/SrTiO3
摘要: We create a two-dimensional electron gas at the Al2O3/SrTiO3/LaAlO3 heterostructures using pulsed laser deposition, which exhibits a decreasing sheet resistance with increasing growth temperatures of Al2O3 films. Structural characterizations of films are confirmed by cross-sectional transmission electron microscopy. Compared with these heterostructures with Al2O3 films deposited on pristine SrTiO3 and TiO2-terminated SrTiO3 substrates, the Al2O3/SrTiO3/LaAlO3 heterostructures are more conductive. X-ray photoelectron spectroscopy indicates the formation of oxygen vacancies at the SrTiO3 side of the interface, which results from the redox reactions by reducing SrTiO3 films. Furthermore, the existence of oxygen vacancies on the SrTiO3 side is verified by a blue-light emission.
关键词: Al2O3/SrTiO3/LaAlO3 heterostructures,pulsed laser deposition,oxygen vacancies,two-dimensional electron gas,conductivity
更新于2025-09-23 15:21:21
-
[IEEE 2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS) - Odessa, Ukraine (2018.9.4-2018.9.7)] 2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS) - Combined Wide-Angle Scanning by a Two-Dimensional Dipole Array
摘要: An analytical solution of an impedance synthesis problem for a two-dimensional dipole antenna array is obtained. The array consists of thin impedance electric dipoles whose centers are located at nodes of a planar rectangular grid with double periodicity. Radiation patterns of each dipole in the array does not differ from that of an isolated dipole. A new method for wide-angle scanning of the array radiation pattern, combining the simultaneous variation of phases of the excitation currents in the dipoles and of their surface impedances is proposed.
关键词: thin impedance dipole,flat two-dimensional antenna array,wide-angle scanning,radiation pattern,wave zone,impedance synthesis method
更新于2025-09-23 15:21:21
-
Surfactant-free stable SnS2 nanoparticles dispersion for deposition of device-quality films
摘要: Tin sulfide (SnS2) has recently attracted considerable attention due to its layered structure that may form two dimensional morphologies. It is an n-type semiconductor with band gap and electron affinity similar to CdS and In2S3; therefore can be regarded as an alternative for these materials in thin film solar cells. Here, we synthesis of SnS2 nanoparticles with different morphology in different ratio of water-ethanol mixed solution by solvothermal method, and observe that more ethanol leads to large sheet like morphologies, while water based synthesis results in very small nanosheets. A challenge in wet deposition of device-quality thin films of SnS2 is the requirement for highly dispersed particles/sheets. We found highly polar dimethylformamide (DMF) as the right dispersing medium, yielding highly stable dispersions. Very uniform nanocrystalline thin films with [001] preferred orientation and good adhesion to substrate are simply deposited by drop casting and spin coating a 0.5 wt% DMF sol of SnS2 at 2000 rpm for 1 min. Electron affinity and band gap of the films are 4.33 eV and 2.27 eV, which is well aligned for copper indium gallium sulfo-selenide (CIGS) solar cells.
关键词: Two dimensional structures,Surfactant-free dispersion,copper indium gallium sulfo-selenide solar cells,SnS2 thin film,Dimethylformamide,Buffer layer
更新于2025-09-23 15:21:21
-
Fabrication of Two-Dimensional Arrays of Fluorescent Centers in Single-Crystalline Diamond Using Particle Beam Writing
摘要: Micrometer-scale patterning was performed using the particle beam writing technique with a focused heavy-ion microbeam, allowing the creation of a unique two-dimensional distribution of fluorescent centers in single-crystalline diamond. The focused nitrogen microbeam was scanned over the target of single-crystalline diamond prepared by chemical vapor deposition to create nitrogen-vacancy (NV) centers at defined positions. Imaging using a custom-built confocal fluorescence microscopy system revealed that the desired NV distribution was generated in the target crystal with a spatial resolution similar to the beam resolution. A two-dimensional matrix barcode test pattern was successfully generated in a diamond substrate to demonstrate the encryption of information inside a solid-state target.
关键词: diamond,particle beam writing,two-dimensional,chemical vapor deposition,nitrogen vacancy centers,confocal fluorescence microscopy
更新于2025-09-23 15:21:21
-
Vibrational fingerprint of localized excitons in a two-dimensional metal-organic crystal
摘要: Long-lived excitons formed upon visible light absorption play an essential role in photovoltaics, photocatalysis, and even in high-density information storage. Here, we describe a self-assembled two-dimensional metal-organic crystal, composed of graphene-supported macrocycles, each hosting a single FeN4 center, where a single carbon monoxide molecule can adsorb. In this heme-like biomimetic model system, excitons are generated by visible laser light upon a spin transition associated with the layer 2D crystallinity, and are simultaneously detected via the carbon monoxide ligand stretching mode at room temperature and near-ambient pressure. The proposed mechanism is supported by the results of infrared and time-resolved pump-probe spectroscopies, and by ab initio theoretical methods, opening a path towards the handling of exciton dynamics on 2D biomimetic crystals.
关键词: FeN4 center,spin transition,ab initio theoretical methods,excitons,carbon monoxide,infrared spectroscopy,graphene,time-resolved pump-probe spectroscopy,two-dimensional metal-organic crystal
更新于2025-09-23 15:21:21
-
Electrochemical Polishing of Two-Dimensional Materials
摘要: Two-dimensional (2D) layered materials demonstrate their exquisite properties such as high temperature superconductivity, superlubricity, charge density wave, piezotronics, flextronics, straintronics, spintronics, valleytronics, and optoelectronics, mostly, at the monolayer limit. Following initial breakthroughs based on micromechanically exfoliated 2D monolayers, significant progress has been made in recent years towards the bottom-up synthesis of large-area monolayer 2D materials such as MoS2 and WS2 using physical vapor deposition (PVD) and chemical vapor deposition (CVD) techniques in order to facilitate their transition into commercial technologies. However, the nucleation and subsequent growth of the secondary, tertiary, and greater numbers of vertical layers poses a significant challenge not only towards the realization of uniform monolayers, but also to maintain their consistent electronic and optoelectronic properties which change abruptly when transitioning from the monolayer to multilayer form. Chemical or physical techniques which can remove the unwarranted top layers without compromising the material quality will have tremendous consequence towards the development of atomically flat, large-area, uniform monolayers of 2D materials. Here, we report a simple, elegant, and self-limiting electrochemical polishing technique which can thin down any arbitrary thickness of 2D material, irrespective of whether these are obtained using powder vapor transport (PVT) or mechanical exfoliation, into their corresponding monolayer form at room temperature within a few seconds without compromising their atomistic integrity. The effectiveness of this electrochemical polishing technique is inherent to 2D transition metal dichalcogenides (TMDCs) owing to the stability of their basal planes, enhanced edge reactivity, and stronger-than-van der Waals (vdW) interaction with the substrate. Our study also reveals that 2D monolayers are chemically more robust and corrosion resistant compared to their bulk counterparts in similar oxidative environments which enables electrochemical polishing of such materials down to a monolayer.
关键词: physical vapor transport,MoS2,WS2,monolayer,corrosion,two-dimensional (2D) materials,electrochemical polishing,electro-ablation
更新于2025-09-23 15:21:21
-
Ultra-High Vacuum Annealing-Assisted Quantum Wells Dimensional Tailoring for Perovskite Light-Emitting Diodes Efficiency Enhancement
摘要: Quasi-two-dimensional (Q-2D) perovskites featured with multiple dimensional quantum wells (QWs) have been the main candidates for optoelectronic applications. However, the excessive low-dimensional perovskite is unfavorable to the device efficiency due to the phonon-exciton interaction and the inclusion of insulating large organic cation. Herein, the low-dimensional QWs formation is suppressed by removing the organic cation 1-naphthylmethylamine iodide (NMAI) through the ultra-high vacuum (UHV) annealing. The perovskite light-emitting diodes (PLEDs) devices based on films annealed with optimized UHV conditions show higher external quantum efficiency of 13.0% and wall-plug efficiency of 11.1% compared to otherwise identical devices with films annealed in a glovebox.
关键词: quantum wells,ultra-high vacuum annealing,dimensional tailoring,quasi-two-dimensional perovskites,perovskite light-emitting diodes
更新于2025-09-23 15:21:01
-
A universal growth strategy for DNA-programmed quantum dots on graphene oxide surfaces
摘要: The emerging materials of semiconductor quantum dots/graphene oxide (QDs/GO) hybrid composites have recently attracted intensive attention in materials science and technology due to their potential applications in electronic and photonic devices. Here, a simple and universal strategy to produce DNA-programmed semiconductor quantum dots/graphene oxide (QDs/GO) hybrid composites with controllable sizes, shapes, compositions, and surface properties is reported. This proof-of-concept work successfully demonstrates the use of sulfhydryl modi?ed single-stranded DNA (S-ssDNA) as a ‘universal glue’ which can adsorb onto GO easily and provide the growth sites to synthesize CdS QDs, CdSe QDs, CdTe QDs and CdTeSe QDs with distinctive sizes, shapes and properties. Also, adapting this method, other graphene oxide-based hybrid materials which are easily synthesized in aqueous solution, including oxides, core–shell structure QDs and metal nanocrystals, would be possible. This method provided a universal strategy for the synthesis and functional realization of graphene -based nanomaterials.
关键词: quantum dots/graphene oxide,DNA,two-dimensional materials,graphene -based nanomaterials
更新于2025-09-23 15:21:01