修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

146 条数据
?? 中文(中国)
  • Near-infrared upconversion–activated CRISPR-Cas9 system: A remote-controlled gene editing platform

    摘要: As an RNA-guided nuclease, CRISPR-Cas9 offers facile and promising solutions to mediate genome modification with respect to versatility and high precision. However, spatiotemporal manipulation of CRISPR-Cas9 delivery remains a daunting challenge for robust effectuation of gene editing both in vitro and in vivo. Here, we designed a near-infrared (NIR) light–responsive nanocarrier of CRISPR-Cas9 for cancer therapeutics based on upconversion nanoparticles (UCNPs). The UCNPs served as “nanotransducers” that can convert NIR light (980 nm) into local ultraviolet light for the cleavage of photosensitive molecules, thereby resulting in on-demand release of CRISPR-Cas9. In addition, by preparing a single guide RNA targeting a tumor gene (polo-like kinase-1), our strategies have successfully inhibited the proliferation of tumor cell via NIR light–activated gene editing both in vitro and in vivo. Overall, this exogenously controlled method presents enormous potential for targeted gene editing in deep tissues and treatment of a myriad of diseases.

    关键词: cancer therapeutics,upconversion nanoparticles,gene editing,CRISPR-Cas9,near-infrared

    更新于2025-11-21 11:08:12

  • Preclinical Study of Biofunctional Polymer-Coated Upconversion Nanoparticles

    摘要: Upconversion nanoparticles (UCNPs) are new-generation photoluminescent nanomaterials gaining considerable recognition in the life sciences due to their unique optical properties that allow high-contrast imaging in cells and tissues. UCNP applications in optical diagnosis, bioassays, therapeutics, photodynamic therapy, drug delivery, and light-controlled release of drugs are promising, demanding a comprehensive systematic study of their pharmacological properties. We report on production of biofunctional UCNP-based nanocomplexes suitable for optical microscopy and imaging of HER2-positive cells and tumors, as well as on the comprehensive evaluation of their pharmacokinetics, pharmacodynamics, and toxicological properties using cells and laboratory animals. The nanocomplexes represent a UCNP core/shell structure of the NaYF4:Yb,Er,Tm/NaYF4 composition coated with an amphiphilic alternating copolymer of maleic anhydride with 1-octadecene (PMAO) and conjugated to the Designed Ankyrin Repeat Protein (DARPin9-29) with high affinity to the HER2 receptor. We demonstrated the specific binding of UCNP-PMAO-DARPin to HER2-positive cancer cells in cultures and xenograft animal models allowing the tumor visualization for at least 24 h. An exhaustive study of the general and specific toxicity of UCNP-PMAO-DARPin including the evaluation of their allergenic, immunotoxic, and reprotoxic properties was carried out. The obtained experimental body of evidence leads to a conclusion that UCNP-PMAO and UCNP-PMAO-DARPin are functional, non-cytotoxic, biocompatible, and safe for imaging applications in cells, small animals, and prospective clinical applications of image-guided surgery.

    关键词: nanotoxicology,pharmacodynamics,pharmacokinetics,animal imaging,upconversion nanoparticles,photoluminescent nanomaterials

    更新于2025-11-21 11:08:12

  • Plasmon-enhanced upconversion luminescence in pyrochlore phase Yb<sub>x</sub>Er<sub>2-x</sub>Ti<sub>2</sub>O<sub>7</sub> thin film

    摘要: Pyrochlore phase YbxEr2-xTi2O7 (YETO) thin films have been prepared by employing a facile sol-gel method combining with spin-coating technique and post-annealing treatment at 700 ℃. High concentration of Yb3+ ions can promote the transformation from Yb3+/Er3+ co-doped anatase phase TiO2 to pyrochlore phase YETO at 700 ℃ temperature. We find that the YETO thin film with 30 mol% Yb3+ ions exhibits the brightest upconversion (UC) emission. Moreover, introduction of Au nanorods (Au NRs) in the YETO thin film can further enhance the UC fluorescence. By adjusting the density of Au NRs, the UC emission intensity is increased by about 2.8-fold due to the excitation field enhancement caused by the localized surface plasmon resonance effect.

    关键词: YbxEr2-xTi2O7,Thin film,Plasmon,Upconversion

    更新于2025-11-21 11:01:37

  • Near-Infrared-Laser-Driven Robust Glass-Ceramic-Based Upconverted Solid-State-Lighting

    摘要: Laser lighting, generally consisting of blue laser and downconversion phosphors, is considered to be the next promising illumination to replace traditional LED lighting. However, the irradiation of high-power blue laser will inevitably cause significant thermal attack, which puts forward high demand on phosphor converters as well as device architecture. In this work, a proof-of-concept prototype of near-infrared laser-driven upconversion solid-state-lighting is proposed. Robust lanthanide doped α/β-NaYF4 embedded glass ceramics are developed as upconverted color converters and routine 980 nm laser is used as pumping source for its relatively low thermal effect and a perfect resonance with Yb3+ sensitizers. Stable and bright upconversion white light is indeed produced by coupling Yb/Tm/Er doped α-NaYF4 glass ceramic with 980 nm laser but the luminous efficiency and energy efficiency are only 0.3 lm/W and 0.12%, respectively, owing to low Er doping concentration. As an alternative, a stacking structure of Yb/Tm doped glass ceramics and Yb/Er doped one is designed as color converter to improve luminous efficiency up to 1.0 lm/W and energy efficiency of 0.5% under a laser power density of 275 W/cm2. It is believed that this research will provide a new idea for laser lighting and open the application field of glass ceramics.

    关键词: upconversion,lanthanide ions,optical materials,glass ceramics,laser lighting

    更新于2025-11-20 15:33:11

  • Yb <sup>3+</sup> /Ln <sup>3+</sup> /Mn <sup>4+</sup> (Ln = Er, Ho, and Tm) doped Na <sub/>3</sub> ZrF <sub/>7</sub> phosphors: oil–water interface cation exchange synthesis, dual-modal luminescence and anti-counterfeiting

    摘要: Efficient dual-modal luminescence is highly desired for applications in high security anti-counterfeiting. In the present work, Yb3+/Ln3+/Mn4+ (Ln = Er, Ho, and Tm) tri-doped Na3ZrF7 phosphors were fabricated via oil–water interface cation exchange using Yb3+/Ln3+:Na3ZrF7 as the exchanging hosts. The as-prepared products exhibited typical Mn4+ red down-shifting luminescence under UV light excitation and Er3+ red, Ho3+ yellow and Tm3+ near-infrared multi-color upconversion emissions under 980 nm laser excitation. The Mn4+ dopants in the Na3ZrF7 host experienced strong crystal-field strength Dq of 3.63 and showed superior thermal stability with up to 90% of the initial emission intensity retained at 448 K. Steady-state and time-resolved emission spectra verified that there was no detrimental energy transfer interaction between Mn4+ and Ln3+, enabling bright and eye-visible bi-functional emissions for the present products. As a consequence, the as-prepared phosphors were demonstrated to be applicable in anti-counterfeiting by a proof of concept experiment of fluorescent labeling for specially designed patterns.

    关键词: phosphors,upconversion,anti-counterfeiting,cation exchange,dual-modal luminescence

    更新于2025-11-20 15:33:11

  • Eu3+/Yb3+ co-doped gadolinium oxysulfide upconverting nanorods: Morphological, physicochemical and optical evaluation

    摘要: In this study, we introduce a novel route to produce down and upconverting Eu3t/Yb3t co-doped oxysul?de nanorods, which display strong red emission at 620 nm under Vis (460 nm) or NIR (976 nm) wavelength excitation. An in-depth analysis of the synthesis parameters such as lanthanides concentration, type of nucleating agent, reaction temperature, and the reaction pressure was performed to determine their in?uence in the morphology and photoluminescence properties. It was demonstrated that as a nucleating agent, ethanolamine is a good substitute of the commonly used triethylamine providing the advantage of using lower toxicity reagents. The Transmission Electron Microscopy (TEM), Infrared (FTIR) and Zeta Potential analysis showed that the chemical surface of nanorods evolve during thermal and sul?dation processes without producing morphological changes. The intensity of light emission during downconversion (DC) and upconversion (UC) phenomena was found to be doping ions concentration dependent. The highest DC light emission was found at a Yb3t/Eu3t concentration ratio of 0.25, while the most intense UC luminescence was found at 4. Conversely, quenching of DC and UC was observed when using Yb3t/Eu3t concentration ratios of 4 and 0.25 respectively, indicating that luminescent centers are strongly affected in both processes by the chemical environment but also for the ions doping ratio. It was demonstrated that two-photon absorption is the primary mechanism for the red emission in the UC process.

    关键词: Nanorods,Rare earth alloys and compounds,Upconversion,Oxysul?de

    更新于2025-11-19 16:56:35

  • Multi-shelled upconversion nanostructures with enhanced photoluminescence intensity <i>via</i> successive epitaxial layer-by-layer formation (SELF) strategy for high-level anticounterfeiting

    摘要: Owing to the ability to convert near-infrared (NIR) incident light into high-energy ultraviolet or visible light photons, lanthanide-doped upconversion nanoparticles (UCNPs) have attracted great attention in anticounterfeiting applications as appealing and unparalleled agents. To facilitate the efficient energy transfer and overcome the bottleneck of low upconverted photoluminescence, we report a one-pot successive epitaxial layer-by-layer formation (SELF) strategy based on ion layer adsorption and Oswald ripening to synthesize a series of high-quality monodispersed multi-shelled UCNPs with narrow size distribution (coefficient of variation less than 5 %). Up to 30 layers of uniform shell are successfully deposited by successive introduction of the shell precursor solutions, which results in fold change of 300 and 200 in upconverted emission intensities for Er3+ and Tm3+-doped multi-shelled UCNPs, respectively. Using as-prepared multi-shelled UCNPs via SELF approach in conjunction with fabricated downconversion nanoparticles (DCNPs), we develop a facile and cost-effective strategy based on dual-modal manipulation of luminescence in anticounterfeiting to provide extra high-level security protection. The genuine pattern with true information is easier to visualize with the naked eye under excitation of 980 nm near-infrared (NIR) laser, while the false information could be readily read out when exposed to ultraviolet (UV) light. Meanwhile, latent fingerprint recognition with low background interference and distinguishable details in ridge patterns is achieved taking advantage of the significantly improved brightness in multi-shelled UCNPs.

    关键词: anticounterfeiting,Upconversion,enhanced photoluminescence,multi-shell,latent fingerprint

    更新于2025-11-19 16:46:39

  • Dual-band luminescent solar converter-coupled dye-sensitized solar cells for high performance semi-transparent photovoltaic device

    摘要: We demonstrate a high-performance semi-transparent solar cell using a dye-sensitized solar cell (DSSC) coupled with a luminescent solar converter (LSC) that absorbs a dual band. We present an architecture of a sandwich-type, downshift (DS) LSC / DSSC / upconversion (UC) LSC. The DS LSC, including anthracene, converts ultraviolet light to visible light, and the UC LSC, which contains a dye pair of meso-tetraphenyl-tetrabenzoporphine palladium / 9,10-bis-penylethynyllanthrancane, converts near-infrared light into visible light. Thus, the dual band LSC improved the power conversion efficiency (PCE) of the DSSC without a significant decrease in visible transmittance. We optimize the concentration of the fluorescence dye to obtain maximum photoluminescence in each LSC. We also optimize backward scattering by introducing nanoparticle scatterers in UC LSC. The dual LSC-DSSC showed an average visible transmittance of 42% and achieved an PCE of up to 7.8%. Our incorporation of broadband-wavelength-harvestable LSCs with a DSSC presents a direction for semi-transparent photovoltaic devices.

    关键词: Luminescence solar concentrator,Semi-transparent photovoltaic devices,Downshift,Photon upconversion,Dye-sensitized solar cells

    更新于2025-11-19 16:46:39

  • Dopamine-functionalized upconversion nanoparticles as fluorescent sensors for organophosphorus pesticide analysis

    摘要: Organophosphorus pesticide (OP) residues in agricultural products, herbal medicines and environment have attracted increasing concerns because they cause high healthy risk. Herein, a tyrosinase-mediated photoinduced electron transfer system was constructed for OPs analysis by using dopamine-functionalized upconversion nanoparticles (UCNPs) as fluorescent (FL) sensors. Dopamine quinone was produced by tyrosinase-mediated oxidation of dopamine on the surface of UCNPs, which acted as electron accepter to quench the FL emission of UCNPs. The FL quenching was inhibited by OP since it inhibited the activity of tyrosinase. Chlorpyrifos was used as a model analyte to investigate the feasibility of the FL sensor for the analysis of OPs. Under the optimal conditions, chlorpyrifos can be analysed in a wide range of 1.0 ? 1000 ng mL?1, with a detection limit of 0.38 ng mL?1 (3σ). Some other groups pesticides, including organonitrogen pesticide, organochlorine pesticide and chloronicotinyl insecticide all showed negligible interference. The proposed sensor was successfully used to analyse chlorpyrifos spiked in Balloonflower and Angelica with acceptable recovery values of 95.4–120.0%, demonstrating its application potential for real samples. It exhibits some advantages like low cost, high sensitivity and free of autofluorescent interference and photobleaching.

    关键词: Tyrosinase,Photoinduced electron transfer,Fluorescent sensor,Organophosphorus pesticide,Upconversion nanoparticles,Chlorpyrifos

    更新于2025-11-14 17:15:25

  • Yb/Er/Tm tri-doped Na3ZrF7 upconversion nanocrystals for high performance temperature sensing

    摘要: Non-contact optical thermometry based on fluorescence intensity ratio (FIR) technique has been widely researched over the past few decades. However, the reported systems exhibit two important shortcomings including the existence of a few interferential signals in addition to the required spectral bands for FIR and the absence of internal standard for reference signal. Herein, only two emission bands of Er3+: 4F9/2→4I15/2 (~673 nm) and Tm3+: 3H4 → 3H6 (~800 nm) are achieved in Yb/Er/Tm tri-doped Na3ZrF7 nano-system. Moreover, the upconversion (UC) emission intensity of Er3+ keeps unchanged with the rising of temperature, which is applied as reference signal; while that of Tm3+ enhances evidently, which is applied as temperature signal. The calculated maximum absolute temperature sensitivity (Sa) and relative temperature sensitivity (Sr) are 0.17 K-1 at 393 K and 1.76 %K-1 at 313 K, respectively.

    关键词: Na3ZrF7 nanocrystals,self-reference,rare earth ions,temperature sensor,upconversion

    更新于2025-11-14 17:04:02