- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Surface decoration of BiOCl with BiVO<sub>4</sub> particles towards enhanced visible-light-driven photocatalytic performance
摘要: BiVO4/BiOCl p-n junctioned photocatalysts were synthesized by surface replacement of pre-synthesized BiOCl with BiVO4 via a hydrothermal route. BiVO4 particles were decorated on the surface of BiOCl, the structures of which were favored of maximizing absorption of visible light. The photocatalytic activity of the heterojunctioned composites were evaluated by degradation of Rhodamine B (RhB) dye under visible light illumination. The results indicated that the composites exhibited superior efficiencies for RhB photodegradation in comparison with pure BiOCl, BiVO4 and BiOCl/BiVO4 with similar compositions. The 30% BiVO4/BiOCl exhibited an optimal photocatalytic activity due to the combinative effects of large visible-light absorbance and carrier separation. Experiments on scavenging active intermediates demonstrated that the enhanced photoactivity was primarily attributed to the formation of p-n junction. An effective built-in electric field was formed by the interface between p-type BiOCl and n-type BiVO4, which promoted the efficient separation of photoinduced electron-hole pairs.
关键词: visible light absorption,BiVO4 decorated BiOCl,surface replacement,heterostructures,charge carrier separation
更新于2025-11-14 17:04:02
-
Regulating Charge-Transfer in Conjugated Microporous Polymer for Photocatalytic Hydrogen Evolution
摘要: Band gap engineering in donor-acceptor conjugated microporous polymers is a potential way to increase the solar energy harvesting towards photochemical water splitting. Herein, we report design and synthesis of a series of donor-acceptor CMPs [tetraphenylethylene (TPE) = donor and 9-fluorenone (F) = acceptor], F0.1CMP, F0.5CMP and F2.0CMP which exhibit tunable band gaps and photocatalytic hydrogen evolution from water. The donor-acceptor CMPs exhibit intramolecular charge transfer (ICT) absorption in the visible region (λmax=480 nm) and their band gap is finely tuned from 2.8 eV to 2.1 eV by increasing the 9-fluorenone content. Interestingly, they also show charge transfer emissions (in 540 -580 nm range), assisted by the energy transfer from the other TPE segments (not involved in CT interaction) as evidenced from fluorescence lifetime decay analysis. By increasing the 9-fluorenone content the emission color of the polymer is also tuned from green to red. Photocatalytic activities of the donor-acceptor CMPs (F0.1CMP, F0.5CMP and F2.0CMP) are greatly enhanced compared to the 9-fluorenone free polymer (F0.0CMP) which is essentially due to improved visible light absorption and low band gap of donor-acceptor CMPs. Among all the polymers F0.5CMP with an optimum band gap (2.3 eV) shows highest H2 evolution under visible light irradiation. Moreover, all the polymers show excellent dispersibility in organic solvents and also they are easily processed onto solid substrates.
关键词: Visible-light absorption,Conjugated polymers,Photocatalysis,Charge transfer,Energy transfer
更新于2025-09-23 15:23:52
-
Multifunctional Photocatalytic Materials for Energy || Energy band engineering of metal oxide for enhanced visible light absorption
摘要: Since the 1970s, when it was discovered that TiO2 could split water and reduce CO2 [1,2], the pursuit has continued to produce solar fuels via renewable sunlight, by mimicking photosynthesis. However, doing so remains one of the major scientific challenges. This process requires both efficient light absorption and effective charge carrier transfer for chemical reactions. For commercial applications, long-term stability is also a prerequisite. Many catalysts have been reported for this exciting process [3–6]. In practice, metal oxide semiconductors are the most abundant ones in nature, and they are more stable in a variety of harsh conditions when used as photocatalysts [7–12]. Regarding the energetic criteria, only wide band gap semiconductors (e.g., TiO2 and SrTiO3) are thermodynamically able to drive water splitting without applied external bias. However, the wide band gap of such oxides limits their light absorption within the ultraviolet region. Some oxides, such as Fe2O3 (Eg = 2.0 eV), have advantages for absorbing visible light, but suffer from high electron affinities and poor charge carrier mobility and diffusion [13–15].
关键词: Energy band engineering,photocatalysis,visible light absorption,metal oxide,solar fuels
更新于2025-09-10 09:29:36