- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
A Comparative Study of Pressure Cooker, Ultra-Violet and RO Methods of Water Purification
摘要: In this work, the performances of the pressure cooker method, the ultra-violet method and RO method of water purification is studied. The performance of any method studied here relates to the production of potable water which meets the World Health Organization (WHO) standards. This comparative study is based on underground water obtained from a depth greater than 300 feet. The results showed that all these three methods yield same level of purity.
关键词: potable water,pressure cooker method,Water purification,reverse osmosis method,ultra-violet method
更新于2025-09-23 15:22:29
-
ZnO/ZnO <sub/>2</sub> /Pt Janus Micromotors Propulsion Mode Changes with Size and Interface Structure: Enhanced Nitroaromatic Explosives Degradation under Visible Light
摘要: Self-motile mesoporous ZnO/Pt-based Janus micromotors accelerated by bubble propulsion that provide efficient removal of explosives and dye pollutants via photodegradation under visible light are presented. Decomposition of H2O2 (the fuel) is triggered by a platinum catalytic layer asymmetrically deposited on the nanosheets of the hierarchical and mesoporous ZnO microparticles. The size-dependent motion behavior of the mesoporous micromotors is studied; the micromotors with average size ~1.5 μm exhibit enhanced self-diffusiophoretic motion, whereas the fast bubble propulsion is detected for micromotors larger than 5 μm. The bubble-propelled mesoporous ZnO/Pt Janus micromotors show remarkable speeds of over 350 μm s?1 at H2O2 concentrations lower than 5 wt %, which is unusual for Janus micromotors based on dense materials such as ZnO. This high speed is related to efficient bubble nucleation, pinning, and growth due to the highly active and rough surface area of these micromotors, whereas the ZnO/Pt particles with a smooth surface and low surface area are motionless. We discovered new atomic interfaces of ZnO2 introduced into the ZnO/Pt micromotor system, as revealed by X-ray diffraction (XRD), which contribute to enhance their photocatalytic activity under visible light. Such coupling of the rapid movement with the high catalytic performance of ZnO/Pt Janus micromotors provides efficient removal of nitroaromatic explosives and dye pollutants from contaminated water under visible light without the need for UV irradiation. This paves the way for real-world environmental remediation efforts using microrobots.
关键词: mesoporous,bubble propulsion,diffusiophoresis,water purification,micromotors
更新于2025-09-23 15:21:21
-
Controlled Synthesis of Mesoporous Single-Crystalline TiO2 Nanoparticles for Efficient Photocatalytic H2 Evolution
摘要: Mesoporous single-crystals have emerged as a unique family of functional materials, exhibiting excellent performance in various applications, owing to their well-defined accessible mesoporosity and highly single-crystalline structures. Precise tailoring structures of mesoporous single-crystals at the nanoscale remains an unsolved scientific and technical challenge. Herein, we report a facile and general approach for the synthesis of mesoporous single-crystalline TiO2 nanoparticles (designated as MSC-TNs) with distinctive traits including tunable morphologies, controllable particle sizes, well dispersity, high hydrophilicity, well-defined mesoporosity and single-crystal nature. Specifically, the amount of water employed in the precursor solution was seen to give fine control over the particle sizes and morphologies of MSC-TNs. MSC-TNs with different sizes show excellent photocatalytic activity in production of hydrogen from water. Under the illumination of 300 W Xe lamp, MSC-TNs were shown to provide good photodegradation performance with Rhodamine 6G, as well as H2 production when loaded 1 wt % Pt. In a CH3OH solution H2 was evolved with a rate of 8.98 mmol h-1 g-1, which is significantly higher than with commercial P25 nanoparticles (4.02 mmol h-1 g-1).
关键词: Water Purification,Photodegradation,Photocatalysis,TiO2,Mesoporous
更新于2025-09-23 15:21:01
-
Enhanced photocatalytic activity of g-C3N4 quantum dots/Bi3.64Mo0.36O6.55 nanospheres composites
摘要: In this research, heterostructured g-C3N4 quantum dots (CNQDs)/Bi3.64Mo0.36O6.55 nanospheres have been fabricated trough an in situ precipitation process. Compared to the pure Bi3.64Mo0.36O6.55, the as-fabricated CNQDs/Bi3.64Mo0.36O6.55 nanocomposites exhibited significantly improved photocatalytic performance for the photodegradation of rhodamine B (Rh B) and bisphenol A (BPA). In addition, 5 wt% CNQDs/Bi3.64Mo0.36O6.55 sample showed the highest photocatalytic efficiency under visible-light irradiation (λ > 420 nm). The effective separation and transmission of photogenerated electron-hole pairs caused by CNQD loading as well as the improved BET surface area are associated with the enhancement of the photocatalytic activity of the CNQDs/Bi3.64Mo0.36O6.55 photocatalyst.
关键词: Water purification,Bi3.64Mo0.36O6.55 nanospheres,Binary heterostructure,g-C3N4 quantum Dots,Photocatalytic activity
更新于2025-09-23 15:21:01
-
A salt-resistant Janus evaporator assembled from ultralong hydroxyapatite nanowires and nickel oxide for efficient and recyclable solar desalination
摘要: Solar energy-driven interfacial water evaporation is a promising energy utilization technology in the field of seawater desalination and water purification. However, the accumulation of salt on the heating surface severely impairs the water evaporation performance and long-time stability. Herein, we demonstrate a new kind of photothermal paper comprising a high-temperature-resistant paper made from ultralong hydroxyapatite nanowires and glass fibers and black nickel oxide (NiO) nanoparticles for solar energy-driven desalination. Owing to the high photothermal conversion ability, fast water transportation in the air-laid paper, and good heat insulation, the hydrophilic HN/NiO photothermal paper can achieve efficient, stable and recyclable water evaporation performance. In addition, a Janus HN/NiO photothermal paper based on hydrophobic sodium oleate-modified ultralong hydroxyapatite nanowires has been developed, and it has a high water evaporation efficiency of 83.5% under 1 kW m?2 irradiation. In particular, with the bottom hydrophobic ultralong hydroxyapatite nanowire layer and water-transporting channels in the air-laid paper to facilitate salt exchange, the as-prepared Janus evaporator exhibits no salt accumulation on the surface, high performance and long-time stable desalination using simulated seawater (3.5 wt% NaCl). Furthermore, the Janus evaporator with the hydrophobic ultralong hydroxyapatite nanowire substrate can be extended to support other photothermal materials such as black titanium oxide (Ti2O3) and Ketjen black carbon. The as-prepared Janus HN/Ti2O3 and Janus HN/KB photothermal paper also exhibit salt-resistant desalination function. The as-prepared Janus salt-resistant photothermal paper with efficient, stable and recyclable merits has great potential in solar energy-driven desalination and water purification.
关键词: desalination,interfacial water evaporation,water purification,solar energy-driven,photothermal paper,ultralong hydroxyapatite nanowires,nickel oxide
更新于2025-09-23 15:19:57
-
Polyurethane-Supported Graphene Oxide Foam Functionalized with Carbon Dots and TiO2 Particles for Photocatalytic Degradation of Dyes
摘要: The design and optimal synthesis of functional nanomaterials can meet the requirements of energy and environmental science. As a typical photocatalyst, TiO2 can be used to degrade dyes into non-toxic substances. In this work, we demonstrated the in-situ hydrothermal synthesis of carbon quantum dots (CQDs)-modified TiO2 (CQDs/TiO2) particles, and the subsequent fabrication of three-dimensional (3D) graphene oxide (GO) foam doped with CQDs/TiO2 via a facile strategy. By making full use of the up-conversion characteristics of CQDs, the synthesized CQDs/TiO2 exhibited high catalytic activity under visible light. In order to recover the photocatalyst conveniently, CQDs/TiO2 and GO were mixed by ultrasound and loaded on 3D polyurethane foam (PUF) by the multiple impregnation method. It was found that GO, CQDs/TiO2, and PUF reveal synergistic effects on the dye adsorption and photocatalytic degradation processes. The fabricated 3D CQDs/TiO2/GO foam system with a stable structure can maintain a high photocatalytic degradation efficiency after using at least five times. It is expected that the fabricated 3D materials will have potential applications in the fields of oil water separation, the removal of oils, and the photothermal desalination of seawater.
关键词: carbon quantum dots,graphene oxide,TiO2,photocatalysis,water purification
更新于2025-09-19 17:15:36
-
Multi-functional MnO <sub/>2</sub> nanomaterials for photo-activated applications by a plasma-assisted fabrication route
摘要: Supported MnO2-based nanomaterials were fabricated on fluorine-doped tin oxide substrates using plasma enhanced-chemical vapor deposition (PE-CVD) between 100 °C and 400 °C, starting from a fluorinated Mn(II) diamine diketonate precursor. Growth experiments yielded β-MnO2 with a hierarchical morphology tuneable from dendritic structures to quasi-1D nanosystems as a function of growth temperature, whose variation also enabled a concomitant tailoring of the system fluorine content, and of the optical absorption and band gap. Preliminary photocatalytic tests were aimed at the investigation of photoinduced hydrophilic (PH) and solid phase photocatalytic (PC) performances of the present nanomaterials, as well as at the photodegradation of Plasmocorinth B azo-dye aqueous solutions. The obtained findings highlighted an attractive system photoactivity even under visible light, finely tailored by fluorine content, morphological organization and optical properties of the prepared nanostructures. The results indicate that the synthesized MnO2 nanosystems have potential applications as advanced smart materials for anti-fogging/self-cleaning end uses and water purification.
关键词: anti-fogging,photoactivated applications,fluorine doping,photocatalysis,water purification,self-cleaning,plasma-assisted fabrication,MnO2 nanomaterials
更新于2025-09-19 17:15:36
-
Superstructure-enabled anti-fouling membrane for efficient photothermal distillation
摘要: Photothermal membrane distillation (MD) combining solar harvesting and heat localization is a rapidly emerging technology for water purification and desalination. However, state-of-the-art photothermal MD still suffers from several issues in membrane fouling, material instability, poor long-term performance and complex synthesis. Herein, we demonstrate a multilevel-roughness membrane by immobilizing a nanoparticle-assembled superstructure on a nanofibrous membrane to obtain omniphobic surface wettability. The nanoparticle-assembled superstructure with abundant nano/micro channels and low surface energy simultaneously captures solar energy, repels chemical/oil-based contaminants and facilitates vapor flow. The unique mechanism based on the effects of multilevel-roughness structure allows effective control of surface wettability, leading to a successful photothermal MD application, highlighted by highly-efficient solar-thermal conversion, excellent anti-fouling behavior and durability. A high clean water yield of 9.01 kg m-2 h-1 is obtained at a solar intensity of 10 kW m-2, corresponding to a solar-water efficiency of 66.8%. More importantly, when operating in complex feed-water conditions, including oil contaminated and high-saline solution, the speed of clean water generation still presents excellent stability over 48 hours of consecutive operation, which significantly outperforms the commercial distillation membranes (typically 1 hour). Multiple merits of efficient solar-thermal conversion and long-term stability, supported by techno-economic and scalability analyses, make the composite membrane promising for clean water generation from diverse contaminant mixtures in the solar-driven MD system.
关键词: Multilevel roughness,Omniphobicity,Solar energy,Water purification,Anti-oil-fouling,Photothermal membrane
更新于2025-09-16 10:30:52
-
Unique 1D/3D K <sub/>2</sub> Ti <sub/>6</sub> O <sub/>13</sub> /TiO <sub/>2</sub> micro-nano heteroarchitectures: controlled hydrothermal crystal growth and enhanced photocatalytic performance for water purification
摘要: Semiconductor photocatalysis towards pollutant degradation driven by solar energy is regarded as a promising technology to solve global energy and environmental problems. In this work, three-dimensional (3D) TiO2 microflowers (MFs) were hybridized with one-dimensional (1D) K2Ti6O13 nanobelts (NBs) to construct novel hierarchical Ti–O-based micro-nano heteroarchitectures (HAs) using a controlled hydrothermal route. The well-developed TiO2 MFs were featured with their petals consisting of several 1D nanostructures with the width of around 100–200 nm. Particularly, the crystal growth mechanism of the unique 1D/3D K2Ti6O13/TiO2 HAs was proposed based on the time-dependent experiments combined with structural and morphological characterizations. Unexpectedly, the optimized K2Ti6O13/TiO2 composites exhibited much higher photocatalytic performance for the degradation of organic dyes and antibiotics under simulated sunlight irradiation, which was more than 2-folds higher than that of single K2Ti6O13 and TiO2 catalysts. Moreover, the photocatalytic activity of K2Ti6O13/TiO2 composites for dye degradation was higher than that of commercial P25 under visible light irradiation (λ > 400 nm). Apart from the advantages of hierarchical micro-nano HAs in improving light adsorption and surface area, the enhanced photocatalytic properties could be particularly attributed to the formation of K2Ti6O13/TiO2 heterojunctions that offered available interfacial channels for charge transfer and separation, as proved by the photoluminescence and photoelectrochemical measurements. Furthermore, good stability and long-term durability of the composite photocatalysts were also determined by cycling tests, mainly resulting from the tightly combined K2Ti6O13/TiO2 heterostructures. This work can be extended to design other hierarchical TiO2-based micro-nano hybrids with superior photocatalytic properties for environmental purification and solar energy conversion.
关键词: photocatalytic performance,K2Ti6O13 nanobelts,water purification,Semiconductor photocatalysis,TiO2 microflowers,micro-nano heteroarchitectures,hydrothermal route
更新于2025-09-16 10:30:52
-
3D printing of mixed matrix films based on metal-organic frameworks and thermoplastic polyamide 12 by selective laser sintering for water applications
摘要: The fabrication of metal-organic framework (MOF)-based macro-materials is considered as a promising strategy towards the practical applications of powdered MOF crystals. In this study, selective laser sintering (SLS), an advanced three-dimensional (3D) powder printing technique, has been employed to fabricate MOF-polymer mixed matrix films (MMFs) using thermoplastic polyamide 12 (PA12) powder as the matrix material and five types of MOFs including ZIF-67, NH2-MIL-101(Al), MOF-801, HKUST-1 and ZIF-8 crystals as the fillers. A three-layer HKUST-1-PA12 complex with a grid pattern is fabricated to demonstrate the printability of 3D MOF-polymer structure. Single-layer MMFs with grid patterns are printed using the five types of MOF fillers with different mass loadings to study their free-standing characteristic, thickness, specific surface area, hydrophilia, water permeate flux and mechanical stability. The methylene blue (MB) adsorption tests are conducted using the NH2-MIL-101(Al)-PA12 MMFs with different grid patterns to exemplify the applications of the MMFs for water purification. It is confirmed that the MOF components retain their high maximum adsorption capacity and the printed MMFs can be conveniently regenerated for cyclic utilization. This work provides an insight into the utilization of advanced 3D printing technology to manufacture macro MOF-polymer materials for practical applications.
关键词: water purification,metal-organic framework,3D printing,selective laser sintering,mixed matrix film
更新于2025-09-16 10:30:52