- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 Photonics North (PN) - Quebec City, QC, Canada (2019.5.21-2019.5.23)] 2019 Photonics North (PN) - Optimization of Nonlinear Optical Properties of Tellurium-Oxide-Coated Silicon Nitride Waveguides
摘要: In low-power wireless neural recording tasks, signals must be compressed before transmission to extend battery life. Recently, compressed sensing (CS) theory has successfully demonstrated its potential in neural recording applications. In this paper, a deep learning framework of quantized CS, termed BW-NQ-DNN, is proposed, which consists of a binary measurement matrix, a non-uniform quantizer, and a non-iterative recovery solver. By training the BW-NQ-DNN, the three parts are jointly optimized. Experimental results on synthetic and real datasets reveal that BW-NQ-DNN not only drastically reduce the transmission bits but also outperforms the state-of-the-art CS-based methods. On the challenging high compression ratio task, the proposed approach still achieves high recovery performance and spike classification accuracy. This framework is of great values to wireless neural recoding devices, and many variants can be straightforwardly derived for low-power wireless telemonitoring applications.
关键词: deep learning,quantized compressive sensing,non-uniform quantization,Wireless neural recording
更新于2025-09-19 17:13:59