- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE) - Vilnius, Lithuania (2018.11.8-2018.11.10)] 2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE) - Automated Image Annotation based on YOLOv3
摘要: A typical pedestrian protection system requires sophisticated hardware and robust detection algorithms. To solve these problems the existing systems use hybrid sensors where mono and stereo vision merged with active sensors. One of the most assuring pedestrian detection sensors is far infrared range camera. The classical pedestrian detection approach based on Histogram of oriented gradients is not robust enough to be applied in devices which consumers can trust. An application of deep neural network-based approach is able to perform with significantly higher accuracy. However, the deep learning approach requires a high number of labeled data examples. The investigation presented in this paper aimed the acceleration of pedestrian labeling in far-infrared image sequences. In order to accelerate pedestrian labeling in far-infrared camera videos, we have integrated the YOLOv3 object detector into labeling software. The verification of the pre-labeled results was around eleven times faster than manual labeling of every single frame.
关键词: deep-learning,YOLOv3,Far-infrared,pedestrian detection,annotation labeling
更新于2025-09-23 15:23:52
-
Real-time Concealed Object Detection from Passive Millimeter Wave Images Based on the YOLOv3 Algorithm
摘要: The detection of objects concealed under people’s clothing is a very challenging task, which has crucial applications for security. When testing the human body for metal contraband, the concealed targets are usually small in size and are required to be detected within a few seconds. Focusing on weapon detection, this paper proposes using a real-time detection method for detecting concealed metallic weapons on the human body applied to passive millimeter wave (PMMW) imagery based on the You Only Look Once (YOLO) algorithm, YOLOv3, and a small sample dataset. The experimental results from YOLOv3-13, YOLOv3-53, and Single Shot MultiBox Detector (SSD) algorithm, SSD-VGG16, are compared ultimately, using the same PMMW dataset. For the perspective of detection accuracy, detection speed, and computation resource, it shows that the YOLOv3-53 model had a detection speed of 36 frames per second (FPS) and a mean average precision (mAP) of 95% on a GPU-1080Ti computer, more e?ective and feasible for the real-time detection of weapon contraband on human body for PMMW images, even with small sample data.
关键词: YOLOv3,real-time,neural network,concealed object detection,deep learning,passive millimeter wave
更新于2025-09-23 15:19:57