修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

121 条数据
?? 中文(中国)
  • Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline

    摘要: In order for the removal of Tetracycline (TC) in wastewaters, an efficient binary Bi2WO6/CuBi2O4 Z-scheme heterojunction photocatalyst was synthesized by loading Bi2WO6 (BWO) nanoparticles on CuBi2O4 (CBO) nanorods via a solvothermal route. The obtained Bi2WO6/CuBi2O4 composite displays photocatalytic activity for TC degradation more than five times higher than that for pure CBO nanorods. The recycling experiment shows that over 91% of TC can be photo-degraded by the optimal Bi2WO6/CuBi2O4 photocatalyst within 60 min even after four cycles. Results of SEM, transient photocurrent response, EIS measurement prove that solvothermal process for BWO loading can introduce rough surface with high-density negative charge on CBO, contributing to effective photo-induced carrier transfer. XPS, Mott?Schottky plots and PL spectra reveal that the loading of BWO as well as interfacial charge redistribution can induce the formation of interfacial electric field for Z-scheme heterojunction, contributing to the high oxidation and reduction capabilities ability of Bi2WO6/CuBi2O4 composite. The study on photocatalytic mechanism discloses that hole (h+) and superoxide radical (?O2?) are dominating reactive oxidation species (ROS) in the photodegradation process. This study has provided a novel route to fabricate Z-scheme photocatalysts for effective photocatalytic degradation processes.

    关键词: charge transfer,Z-scheme heterojunction,environmental materials,interfacial electric field,photocatalysis,tetracycline degradation

    更新于2025-11-21 10:59:37

  • Visible-Light Overall Water Splitting by CdS/WO <sub/>3</sub> /CdWO <sub/>4</sub> Tricomposite Photocatalyst Suppressing Photocorrosion

    摘要: Photocatalytic water splitting under visible light has attracted attention as a possible solution to the energy exhaustion problem. Hitherto, water splitting has been generally achieved using several oxynitrides, oxysul?des, and nitrides, and only a few studies report water splitting using cadmium sul?de (CdS) as a photocatalyst. A major reason for this is that CdS undergoes photocorrosion. In this study, we achieved an overall water splitting under visible light using a CdS/WO3/CdWO4 tricomposite photocatalyst. In the process, photocorrosion of CdS was suppressed by covering it with WO3 and CdWO4, and the oxidation reaction progressed in WO3 by the Z-scheme type photocatalytic reaction.

    关键词: cadmium tungstate,tungsten oxide,photocorrosion,water splitting,cadmium sul?de,Z-scheme

    更新于2025-11-19 16:51:07

  • Self-generating CeVO4 as conductive channel within CeO2/CeVO4/V2O5 to induce Z-scheme-charge-transfer driven photocatalytic degradation coupled with hydrogen production

    摘要: The construction of highly efficient Z-scheme photocatalytic system is regarded as a hot research topic in the fields of environmental remediation and renewable energy production. In this work, a novel Z-scheme CeO2/CeVO4/V2O5 photocatalyst is successfully prepared by using solid phase reaction method. The photocatalytic degradation of organic pollutant (Methylene Blue) with simultaneous hydrogen production is efficiently realized over the prepared Z-scheme CeO2/CeVO4/V2O5 photocatalysts under visible-light irradiation. The effects of treatment temperatures and treatment times of CeO2/V2O5 composite on the photocatalytic performance of Z-scheme CeO2/CeVO4/V2O5 photocatalyst are studied. The as-prepared Z-scheme CeO2/CeVO4/V2O5 (550-3) photocatalyst heat-treated at 550 °C for 3.0 h exhibits the highest photocatalytic performance. It can be ascribed to a moderate amount of CeVO4 nanoparticles generated between CeO2 and V2O5. The generated CeVO4 nanoparticles can be used as effective conductive channel to transfer the photo-generated carriers. At the same time, as redox reaction centers it can further accelerate the transfer of photo-generated electrons, effectively enhancing the separation efficiency of photo-generated electron and hole pairs. Furthermore, cyclic test demonstrates that the as-prepared Z-scheme CeO2/CeVO4/V2O5 (550-3) photocatalyst still maintains a high level of photocatalytic activity within five periods under the same conditions. Moreover, the related photocatalytic mechanism for degradation of organic pollutants with simultaneous hydrogen evolution over the Z-scheme CeO2/CeVO4/V2O5 (550-3) photocatalyst is proposed. Perhaps, this study affords a simple and novel method to design and develop next generation of highly efficient Z-scheme photocatalysts.

    关键词: Conductive channel,Z-scheme CeO2/CeVO4/V2O5 photocatalyst,Solid phase reaction method,Simultaneous hydrogen evolution,Visible-light photocatalytic degradation

    更新于2025-11-19 16:51:07

  • An anti-symmetric dual (ASD) Z-scheme photocatalytic system: (ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4) for organic pollutants degradation with simultaneous hydrogen evolution

    摘要: An anti-symmetric dual (ASD) Z-scheme ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4 photocatalyst was prepared by isoelectric point and calcination methods. The photocatalytic activity is estimated via degradation of Acid Orange II as a target organic contaminant with simultaneous hydrogen evolution under simulated solar-light irradiation. The prepared ASD Z-scheme ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4 photocatalyst has a high photocatalytic activity, which can be assigned to the enlarged photoresponse range, increased reduction surface and enhanced separation efficiency of photo-induced carriers. Furthermore, the cyclic experiment proves that the prepared ASD Z-scheme ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4 photocatalyst still maintains a high photocatalytic activity within five repetitive cycles. Moreover, the mechanism on photocatalytic degradation of organic pollutants with simultaneous hydrogen evolution caused by ASD Z-scheme ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4 photocatalyst is proposed. It is wished that this study could provide a promising pathway for effective degradation and rapid hydrogen production.

    关键词: Simultaneous hydrogen evolution,Organic contaminants,Anti-symmetric dual (ASD) Z-scheme photocatalytic system,ZnIn2S4/Er3+:Y3Al5O12@ZnTiO3/CaIn2S4 composite,Up-conversion luminescence agent,Photocatalytic degradation

    更新于2025-11-19 16:51:07

  • Photocatalytic and Photo-Fenton Catalytic Degradation Activities of Z-Scheme Ag2S/BiFeO3 Heterojunction Composites under Visible-Light Irradiation

    摘要: Z-scheme Ag2S/BiFeO3 heterojunction composites were successfully prepared through a precipitation method. The morphology and microstructure characterization demonstrate that Ag2S nanoparticles (30–50 nm) are well-decorated on the surfaces of polyhedral BiFeO3 particles (500–800 nm) to form Ag2S/BiFeO3 heterojunctions. The photocatalytic and photo-Fenton catalytic activities of the as-derived Ag2S/BiFeO3 heterojunction composites were evaluated by the degradation of methyl orange (MO) under visible-light irradiation. The photocatalytic result indicates that the Ag2S/BiFeO3 composites exhibit much improved photocatalytic activities when compared with bare Ag2S and BiFeO3. The optimum composite sample was observed to be 15% Ag2S/BiFeO3 with an Ag2S mass fraction of 15%. Furthermore, the addition of H2O2 can further enhance the dye degradation efficiency, which is due to the synergistic effects of photo- and Fenton catalysis. The results of photoelectrochemical and photoluminescence measurements suggest a greater separation of the photoexcited electron/hole pairs in the Ag2S/BiFeO3 composites. According to the active species trapping experiments, the photocatalytic and photo-Fenton catalytic mechanisms of the Ag2S/BiFeO3 composites were proposed and discussed.

    关键词: polyhedral BiFeO3 particles,photo-Fenton catalysis,Ag2S nanoparticles,photocatalysis,Z-scheme Ag2S/BiFeO3 heterojunction

    更新于2025-11-19 16:46:39

  • In-Situ Synthesis of Nb2O5/g-C3N4 Heterostructures as Highly Efficient Photocatalysts for Molecular H2 Evolution under Solar Illumination

    摘要: This work focuses on the synthesis of heterostructures with compatible band positions and a favourable surface area for the efficient photocatalytic production of molecular hydrogen (H2). In particular, 3‐dimensional Nb2O5/g‐C3N4 heterostructures with suitable band positions and high surface area have been synthesized employing a hydrothermal method. The combination of a Nb2O5 with a low charge carrier recombination rate and a g‐C3N4 exhibiting high visible light absorption resulted in remarkable photocatalytic activity under simulated solar irradiation in the presence of various hole scavengers (triethanolamine (TEOA) and methanol). The following aspects of the novel material have been studied systematically: the influence of different molar ratios of Nb2O5 to g‐C3N4 on the heterostructure properties, the role of the employed hole scavengers, and the impact of the co‐catalyst and the charge carrier densities affecting the band alignment. The separation/transfer efficiency of the photogenerated electron‐hole pairs is found to increase significantly as compared to that of pure Nb2O5 and g‐C3N4, respectively, with the highest molecular H2 production of 110 mmol/g·h being obtained for 10 wt % of g‐C3N4 over Nb2O5 as compared with that of g‐C3N4 (33.46 mmol/g·h) and Nb2O5 (41.20 mmol/g·h). This enhanced photocatalytic activity is attributed to a sufficient interfacial interaction thus favouring the fast photogeneration of electron‐hole pairs at the Nb2O5/g‐C3N4 interface through a direct Z‐scheme.

    关键词: Z‐Scheme,H2 evolution,hydrothermal synthesis,graphitic carbon nitride,photocatalysis,heterostructures,Niobium(V) oxide

    更新于2025-11-14 17:03:37

  • Construction of dual defect mediated Z-scheme photocatalysts for enhanced photocatalytic hydrogen evolution

    摘要: The construction of Z-scheme system is a promising approach for photocatalytic hydrogen evolution (PHE). In this study, we fabricated a direct Z-scheme system consisting of defect-rich g-C3N4 nanosheets (DR-CNNS) crumpled nanosheets with defect-rich TiO2 (DR-TiO2) nanoparticles via a dual defective strategy. The optimized dual-defective rich TiO2/CNNS composite showed a superior PHE rate of ?651.79 μmol/h with a turnover frequency of ?419.3 h?1 as well as high stability and recyclability, which presented the highest value in single defective TiO2 or g-C3N4-based photocatalysts families reported previously. Furthermore, this protocol could also be extended to synthesize other dual defective g-C3N4/oxides (ZnO, SnO2, etc.) heterostructures. The improved photocatalytic performances could be ascribed to the following aspects: (1) rich dual defect, narrowing the band gap and providing more reactive sites for PHE; (2) intimate interface, facilitating interfacial migration and utilization of photogenerated charges; (3) Z-scheme structure, accelerating photogenerated electron-hole pair separation and thus leading to more e?cient PHE. Our work highlights the critical role of defects in construction of Z-scheme system and provides the possibility of utilizing dual defective g-C3N4-based systems for other photocatalytic applications including CO2 reduction and water puri?cation.

    关键词: Photocatalytic hydrogen evolution,Dual defect,Oxides/g-C3N4,Heterojunction,Direct Z-scheme

    更新于2025-11-14 15:27:09

  • Rationally Designed Fe2O3/GO/WO3 Z-Scheme Photocatalyst for Enhanced Solar light Photocatalytic Water Remediation

    摘要: A novel ternary Fe2O3/GO/WO3 all-solid-state Z-Scheme photocatalyst was rationally designed. Structural, morphological, optical and electronic properties of the synthesized nanocomposite were investigated by XRD, SEM, TEM, UV-vis Diffuse Reflectance and Raman spectroscopy. The results revealed the successful synthesis of the nanocomposite materials. Uniquely, double absorption edges at 2.0 and 2.3 eV for Fe2O3/WO3 and triple absorption edges at 1.5, 1.8 and 2.1 eV for Fe2O3/GO/WO3 were investigated for the first time. Lower absorption band edges dominated for both Fe2O3/WO3 and Fe2O3/GO/WO3, while higher absorption edges dominated for pure nanomaterials. The enhanced interaction among GO, Fe2O3 and WO3 matrix explained the reduction in the CB energy leading to efficient electron separation and transformation and consequently improving the photocatalytic activity. The visible light photocatalytic performance of Fe2O3/GO/WO3 nanocomposites were evaluated for degradation of methylene blue (MB) and crystal violet (CV) dyes as model water pollutants. The photocatalytic activity for degradation of both dyes was found to be greatly enhanced in the presence of ternary Fe2O3/GO/WO3 nanocomposite as compared to nanocomposite systems of Fe2O3/WO3, WO3/GO and Fe2O3/GO or pure Fe2O3 and WO3 nanomaterials. The enhancement in the photocatalytic performance of ternary Fe2O3/GO/WO3 nanocomposite was proven to be due to the all-solid-state Z-Scheme in which the photogenerated electrons in the CB of photosystem I (WO3) transferred through GO mediator and recombined with the photogenerated holes in the VB of Fe2O3 (photosystem II). So that, the electron-hole pair recombination can be suppressed in both systems. Moreover, the photocatalytic activity of the best Fe2O3/GO/WO3 nanocomposite (FGW 30) has been tested for the degradation of phenol. The results show that 95.4 % of phenol was degraded in 120 minutes. Thus, this study provides an efficient green Z-Scheme photocatalyst for water remediation utilizing solar light.

    关键词: solar light photocatalysis,organic dyes degradation,all-solid-state Z-Scheme,Ternary Fe2O3/GO/WO3,phenol mineralization

    更新于2025-11-14 15:26:12

  • Photoelectrochemical enhancement from deposition of BiVO4 photosensitizer on different thickness layer TiO2 photoanode for water splitting application

    摘要: TiO2 is a prominent photocatalyst and has been pioneering the research in water splitting for hydrogen cell production. However, TiO2 has low visible region absorption which limit its functionality as a photoabsorber and requires addition of other high absorptive material such as BiVO4. Fabrication of TiO2 photoanode on FTO substrate and deposition of BiVO4 on TiO2 were done using simple spin coating procedure. TiO2/BiVO4 photoelectrode were first tested for its photo absorption, photocurrent generation and electrical impedance to obtain the optimized sample. Optimized sample then further tested for its photocurrent generation stability using linear sweep voltammetry and time dependent photocurrent test. Photo absorption enhancement from TiO2/BiVO4 of almost 10 folds achieved along the visible region comparing to pure TiO2. Photogenerated charge produced from TiO2/BiVO4 is also 3 folds higher compared to pure TiO2at water oxidation threshold potential at 1.23 V vs. RHE. From photocurrent generation analysis, heterostructure of TiO2/BiVO4 proven to produce more than 3 folds higher photocurrent comparing to both pure TiO2 and BiVO4.

    关键词: Z-scheme,Bismuth vanadate,Thin-film,Titanium dioxide,Photoelectrochemical water splitting

    更新于2025-11-14 15:19:41

  • Review on metal sulphide-based Z-scheme photocatalysts

    摘要: Semiconductor-based heterojunction photocatalysts have received considerable attention for solar energy conversion and environmental purification due to their spatially separated reduction and oxidation sites, effective separation and transportation of photo-excited charge carriers and strong redox ability. With their wide visible-light responsive range and high photocatalytic activity, metal sulphide is an important material in developing photocatalysts. This review summarizes and highlights recent research progress in sulphide-based direct Z-scheme photocatalysts, followed by analysis on the limitations over all-solid-state Z-scheme photocatalyst. Furthermore, the applications and characterization methods of sulphide-based direct Z-scheme photocatalyst are summarized. Finally, the challenges and perspectives of sulphide-based Z-scheme photocatalyst are discussed.

    关键词: CdS,direct Z-scheme,All-solid-state Z-scheme,S-scheme,metal sulphide

    更新于2025-09-23 15:23:52