修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

50 条数据
?? 中文(中国)
  • studied with angle-resolved photoemission spectroscopy

    摘要: We study the band structure of twinned and detwinned BaFe2As2 using angle-resolved photoemission spectroscopy. The combination of measurements in the ordered and normal states along four high-symmetry momentum directions (Γ/Z-X/Y) enables us to identify the complex reconstructed band structure in the ordered state in great detail. We clearly observe the nematic splitting of the dxz and dyz orbitals as well as folding due to magnetic order with a wave vector of (π, π, π). We are able to assign all observed bands. In particular we suggest an assignment of the electron bands different from previous reports. The high-quality spectra allow us to achieve a comprehensive understanding of the band structure of BaFe2As2.

    关键词: band structure,BaFe2As2,angle-resolved photoemission spectroscopy,magnetic order,nematic splitting

    更新于2025-09-23 15:23:52

  • Reduced order derivation of the two-dimensional band structure of a mixed-mode resonator array

    摘要: In this paper, the 2D band structure of a mixed-mode metamaterial resonator array for in-plane waves is investigated. The band structure in the interior and on the boundary of the irreducible Brillouin zone and 1D dispersion diagrams for different propagation angles are calculated numerically and presented. Additionally, a reduced order analytical method is established to compare and approximate the band structure. The studied metamaterial, with a T-shaped cantilever beam as the resonator in its square array repeating unit cells, exhibits branches with mixed P and SV waves except at exactly one angle of propagation. This paper also reports on the occurrence of avoided level crossings, which are related to the existence of exceptional points in the complex domain. A reduced order analytical approach is used that can generate partial (low branches) band structure with relatively little computational effort. The reduced order model agrees well with the numerical results for these low branches and can provide support in mode identification and band sorting. With proper adjustments in parameters, this analytical method will be applicable to other metamaterials that have a similar unit cell structure.

    关键词: band structure,reduced order model,resonator array,metamaterial,avoided level crossings,mixed-mode waves

    更新于2025-09-23 15:23:52

  • Band structure and optical constants of SnS <sub/>2</sub> single crystals

    摘要: Absorption (K), reflection (R) and wavelength modulated transmission (ΔT/Δλ) spectra in SnS2 crystals of hexagonal phase (space group P63/mmc) were investigated in temperature interval from 300 to 10 K. It was established that indirect band gap (Eg ind - 2.403 eV) is due to unpolarized indirect transitions between Γ and M points of Brillouin zone. A minimal direct band gap (Eg dir - 2.623 eV) in E||b polarization is formed by direct allowed transitions and in E⊥b polarization (2.698 eV) by forbidden transitions in Γ point of Brillouin zone. A magnitude of refractive index (n) changes from 3 to 4 and has a maximum at 2.6 eV. Optical functions (n, k, ε1 and ε2) in energy region E > Eg (3 - 6.5 eV) were calculated from measured reflection spectra by Kramers-Kronig analysis. Features observed in reflection and optical function spectra were assigned to electron transitions. This electron transitions were localized in framework of theoretically calculated band structure.

    关键词: optical functions,electronic band structure,layered SnS2 crystals,absorption, reflection and transmission spectra

    更新于2025-09-23 15:23:52

  • A comparative ab initio study of the structural, mechanical, electronic and optical behaviors of ZnO:Ni thin films with nanometer scale

    摘要: The electronic and optical properties of undoped and Ni–doped ZnO thin films with nanometer scale have been studied in the wurtzite phase, by first–principle approach. Density functional theory has been employed to calculate the fundamental properties of the films using full–potential linearized augmented plane–wave method. Ni doping was found to reduce the bandgap value of the material. Additionally, DOS effective mass of the electrons was evaluated. It was revealed that the effective mass of the electrons at the bottom of conduction band increased with Ni doping. Decrease of reflectance for thin films with nanometer scale in the UV–vis region was observed. The substitution by Ni decreased the intensity of the peaks, and a red shift was observed in the absorption peak. Moreover, the static dielectric constant, and static refractive index decreased with Ni content. Energy loss function of the modeled compounds was also evaluated. All calculated parameters were compared with the available experimental and other theoretical results.

    关键词: DFT,band structure,structural properties,electronic behaviors,optical properties,ZnO:Ni thin film

    更新于2025-09-23 15:23:52

  • Sharp increase in the density of states in PbTe upon approaching a saddle point in the band structure

    摘要: PbTe is a leading mid-range thermoelectric material with a zT that has been enhanced by, amongst other methods, band engineering. Here we present an experimental study of the Hall effect, quantum oscillations, specific heat, and electron microprobe analysis that explores the evolution of the electronic structure of PbTe heavily doped with the 'ideal' acceptor Na up to the solubility limit. We identify two phenomenological changes that onset as the electronic structure deviates from a Kane-type dispersion at around 180 meV; a qualitative change in the field dependence of the Hall effect indicative of an increase in the high-field limit and a change in the Fermiology, and a sharp increase in the density of states as a function of energy. Following consideration of three possible origins for the observed phenomenology we conclude that the most likely source is nonellipsoidicity of the L pocket upon approach to a saddle point in the band structure, which is evidenced directly by our quantum oscillation measurements. Comparison to density functional theory calculations imply that this evolution of the electronic structure may be a key contributor to the large thermopower in PbTe.

    关键词: band structure,PbTe,Hall effect,density of states,thermoelectric,quantum oscillations

    更新于2025-09-23 15:23:52

  • [IEEE 2018 19th International Conference on Electronic Packaging Technology (ICEPT) - Shanghai (2018.8.8-2018.8.11)] 2018 19th International Conference on Electronic Packaging Technology (ICEPT) - Graphene-like Monolayer Yttrium Nitride: A Moderate Semiconductor and Pronounced Electronic Insensitivity to Strain

    摘要: It is extremely important to explore two-dimensional materials with excellent properties due to their potential applications in future electronic devices. In the present study, a 2D hexagonal YN (h-YN) is predicted based on theoretical calculations. By assessing the phonon spectrum, ab initio molecule dynamics and elastic constants, the h-YN monolayer is proved to own satisfying thermal, dynamic and mechanical stability. Distinguishing from the most reported 2D transition metal mononitrides which exhibit metallic, monolayer h-YN presents a semiconducting characteristic with a indirect bandgap of 1.144 eV. In particular, h-YN presents unusually insensitive responses of electronic structures to tensile or compressive strain due to the valence orbital hybridization. Moderate bandgap together with insensitive electronic responses to strain endow h-YN a promising candidate in future nanoscale electronic devices in high-strain conditions.

    关键词: nano-electronics,strain condition,band structure,two-dimensional

    更新于2025-09-23 15:22:29

  • Novel Porous Boron Nitride Nanosheet with Carbon Doping: Potential Metal-Free Photocatalyst for Visible-Light-Driven Overall Water Splitting

    摘要: The band gap of hexagonal boron nitride (h-BN) is far too wide for efficiently utilizing visible light, limiting its application in photocatalysis. The present study employs first principles calculations to demonstrate that the band gap energies of porous h-BN (p-BN) can be tuned by carbon doping to levels appropriate for the absorption of visible-light, and that the conduction band and valence band match well with the potentials of both hydrogen and oxygen evolution reactions. Importantly, a strategy of carbon doping to improve the energy level of valence band maximum is also proposed. Moreover, the carbon-doped p-BN exhibits good separation between photogenerated electrons/holes and structural stability at high temperatures. The DFT results help the design of high-performance two-dimensional photocatalysts that avoid the use of metals.

    关键词: metal-free catalysts,photocatalyst,porous boron nitride nanosheets,overall water splitting,band structure engineering

    更新于2025-09-23 15:22:29

  • Enhancement of monolayer SnSe light absorption by strain engineering: A DFT calculation

    摘要: Strain effects on the electronic and optical properties of monolayer SnSe is studied by APW + lo method in DFT framework. The applied strains cause direct-indirect transition of SnSe band gap which is mainly constructed by s/p hybridization. The armchair εac and zigzag εzz reduce the unstrained band gap of 1.05 eV down to 0 eV at 12% compression, but at 12% tension, the band gap decreases to 0.726–0.804 eV. The band gap always increases under biaxial strain εb at at 12% compression to 12% tension. We observe an enhancement of real ε1(ω) and imaginary ε2(ω) parts of dielectric function by 14% ? 30% of magnitude, wider peak distribution to infrared and ultra-violet regions, and appearance of new peaks in the ε1(ω) and ε2(ω) spectrums. As a consequence, the light absorption α(ω) is significantly enhanced in the ultra-violet region and the absorption even starts at lower energy at infrared region.

    关键词: Strain,Optical properties,Electronic band structure,First-principles,Monolayer SnSe

    更新于2025-09-23 15:22:29

  • Elastic and optoelectronic properties of CaTa2O6 compounds: Cubic and orthorhombic phases

    摘要: Using first principles density functional theory (DFT) simulations, the structural, electronic, optical and elastic properties of CaTa2O6 oxide for cubic and orthorhombic phases are studied by highly accurate (FP-LAPW) method within the GGA + U approximation. The calculated lattice parameters are consistent with available experimental data. The electronic band structure calculations have shown that the band gaps in CaTa2O6 are equal to 3.08 eV and 4.40 eV for the cubic and orthorhombic structures, respectively. For both the phases the main optical properties, e.g., absorption coefficient, dielectric constant, energy loss function, and reflectivity, refractive index, and extinction coefficient are calculated and discussed in detail in the spectral range 0-14 eV. Cubic and orthorhombic phases exhibit significantly different optical characteristics. The electronic bonding characters of CaTa2O6 with different symmetries are explored via charge density distribution mapping. Strong covalent bonding character dominates in both the phases of CaTa2O6. Elastic properties of CaTa2O6 for cubic and orthorhombic phases are also investigated. The stress strain method is used for the determination of elastic constants in both the phases. The bulk modulus, shear modulus, Young’s modulus, along with the important elastic anisotropy factors and Poisson’s ratio are studied in detail.

    关键词: First principles density functional theory,GGA+U approximation,FP-LAPW method,Optical constants,Electronic band structure,electro technical materials

    更新于2025-09-23 15:22:29

  • Electronic properties and optical behaviors of bulk and monolayer ZrS2: A theoretical investigation

    摘要: In this paper, we study the di?erence in electronic and optical properties of bulk and monolayer zirconium sul?de by applying the APW + lo method in the framework of density functional theory. All calculation is performed at the energy level of visual light and higher ranging from 0 eV to 15 eV. Our results demonstrates that except for the underestimated band gap like other GGA calculation, the remain properties like dielectric function, the re?ectivity, absorption and loss energy are close to experiment. The valence band is constructed by mainly sulfur s/p-states and the lower portion of zirconium s/p/d-states. The conduction band is mostly donated by zirconium d-state. In contrast with bulk structure, the valence band maximum in monolayer has the triple peak at Γ point, making its monolayer be more sensitive to light absorption. The di-electric function has the highest peak at about 1.5–2.5 eV with remarkable anisotropy, beyond this level to the ultraviolet region the anisotropy decreases and almost disappears at energy larger than 10 eV. The absorption is at 106 x 10 cm4 for energy range 5–10 eV, while the re?ectivity is at its highest value of 30 %–50 % in the energy range from 0 to 8 eV. The energy loss of monolayer is higher than those of bulk. For optical and electronic properties, the monolayer show sharper peaks and their clear separation indicate the progressive application of monolayer zirconium sul?de.

    关键词: Monolayer ZrS2,Strain,First-principles,Band structure,Optical properties

    更新于2025-09-23 15:21:21