- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Monitoring strong coupling in nonlocal plasmonics with electron spectroscopies
摘要: Plasmon-exciton polaritons provide exciting possibilities to control light-matter interactions at the nanoscale by enabling closer investigation of quantum optical effects and facilitating novel technologies based, for instance, on Bose-Einstein condensation and polaritonic lasing. Nevertheless, observing and visualizing polaritons is challenging, and traditional optical microscopy techniques often lead to ambiguities regarding the emergence and strength of the plasmon-exciton coupling. Electron microscopy offers a more robust means to study and verify the nature of plexcitons, but it is still hindered by instrument limitations and resolution. A simple theoretical description of electron beam-excited plexcitons is therefore vital to complement ongoing experimental efforts. Here we apply analytic solutions for the electron-loss and photon-emission probabilities to evaluate plasmon-exciton coupling studied either with the recently adopted technique of electron energy-loss spectroscopy, or with the so-far unexplored in this context cathodoluminescence spectroscopy. Foreseeing the necessity to account for quantum corrections in the plasmonic response, we extend these solutions within the framework of general nonlocal hydrodynamic descriptions. As a specific example, we study core-shell spherical plasmon-molecule hybrids, going beyond the standard local-response approximation through the hydrodynamic Drude model for screening and the generalized nonlocal optical response theory for nonlocal damping. We show that electron microscopies are extremely powerful in describing the interaction of emitters with the otherwise weakly excited by optical means higher-order plasmonic multipoles, a response that survives when quantum-informed models are considered. Our work provides, therefore, both a robust theoretical background and supporting argumentation to the open quest for improving and further utilizing electron microscopies in strong-coupling nanophotonics.
关键词: electron energy-loss spectroscopy,nonlocal hydrodynamic descriptions,cathodoluminescence spectroscopy,quantum plasmonics,Plasmon-exciton polaritons
更新于2025-09-23 15:19:57
-
Two-dimensional analysis of the nonuniform quantum yields of multiple quantum wells for AlGaN-based deep-ultraviolet LEDs grown on AlN templates with dense macrosteps using cathodoluminescence spectroscopy
摘要: AlGaN-based deep-ultraviolet light-emitting diodes (LEDs) incorporating uneven multiple quantum wells (MQWs) with inclined and terrace zones, which were fabricated on an AlN template with dense macrosteps, have exhibited a high internal quantum efficiency (IQE). To investigate the microscopic structure of uneven MQWs, cathodoluminescence (CL) mapping characterization was carried out, and the maps of the CL intensity at 300 K relative to that at 38 K were obtained for uneven MQWs that targeted 265 and 285 nm LEDs. At an electron beam current of less than 1.0 nA, the signals from inclined and terrace zones of the uneven MQWs were confirmed to satisfy the non-saturated excitation condition at 300 K. Nonradiative recombination (NR) was insufficiently frozen even at 38 K, specifically on the terraces in the 265 nm MQW, suggesting high concentrations of NR centers due to point defects (PDs). In contrast, NR in the 285 nm MQW at 38 K was closer to freeze-out. The concentration of PDs in the 285 nm MQW was likely to be lower than that in the 265 nm MQW. Finally, the ratios of the CL intensity at 300 K to those at 38 K were mapped, demonstrating an approach to creating an approximate map of IQE. The values in the CL intensity ratio maps are discussed by considering the analytical error factors. The results support the model of localized current injection through Ga-rich stripe zones in the n-AlGaN cladding layer.
关键词: AlGaN,cathodoluminescence spectroscopy,internal quantum efficiency,deep-ultraviolet LEDs,multiple quantum wells
更新于2025-09-12 10:27:22