- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
All-carbon THz components based on laser-treated diamond
摘要: We report on fs laser structuring and graphitization of diamond and experimental characterization of its THz response. A full characterization of graphitized, conductive layer generated by laser irradiation is carried out by performing scanning-electron microscopy, Raman spectroscopy and electrical measurements. The transmittance of the laser textured diamond samples, both with the graphitic overlayer and after selective oxidizing etching, is analyzed in the (0.25 ÷ 6.0) THz spectral range. A significant selective absorption of the graphitized overlayer towards polarized THz radiation is demonstrated, which is associated to the formation of graphitic laser induced periodic surface structures. This anisotropy allows conceiving compact passive metasurfaces based on conductive/dielectric patterns on the diamond plate surface for the development of robust, lightweight and broadband THz optical components.
关键词: graphitic laser induced periodic surface structures,graphitization,electrical measurements,fs laser structuring,THz response,transmittance,THz optical components,polarized THz radiation,conductive layer,diamond,Raman spectroscopy,metasurfaces
更新于2025-09-23 15:19:57
-
Evidence of Low Temperature Joints in Silver Nanowire Based Transparent Conducting Layers for Solar cells
摘要: The primary stage of joint formation of silver nanowires (AgNWs) at 60 °C is investigated using rotary scanning transmission electron microscopy (STEM with tomographic reconstruction images), and super large-scale molecular dynamic (MD) simulation (2×106 atoms). This study proves to establish that silver nanowires do not require the conventional high temperature post treatment process at 200 °C to form fused contacts at the intersections. In fact, a low temperature annealing at 60 °C facilitates formation of highly conductive networks. The connection between the nanowires is made through a stage called thinning, shown in this report for the first time, which occurs before broadening of the nanowires and is caused due to simultaneous effects of loads from the top nanowires and the heating, as confirmed by STEM and MD result. The outcomes of our investigation significantly promote the application of AgNWs as a transparent conductive layer for solar cells with requirement of low temperature processing such as Kasterite, Perovskite and Organic solar cells.
关键词: Low temperature process,Scanning transmission electron microscopy,Molecular dynamic simulation,Junction resistivity,Transparent conductive layer,Silver nanowire
更新于2025-09-19 17:13:59