- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Smart charging of electric vehicles considering photovoltaic power production and electricity consumption: a review
摘要: Photovoltaics (PV) and electric vehicles (EVs) are two emerging technologies often considered as cornerstones in the energy and transportation systems of future sustainable cities. They both have to be integrated into the power systems and be operated together with already existing loads and generators and, often, into buildings, where they potentially impact the overall energy performance of the buildings. Thus, a high penetration of both PV and EVs poses new challenges for cities. With a potentially large increase in PV and EV penetration, understanding of the synergies between PV, EVs and existing electricity consumption is required. Thus, a high penetration of both PV and EVs poses new challenges. Understanding of the synergies between PV, EVs and existing electricity consumption is therefore required. Recent research has shown that smart charging of EVs could improve the synergy between PV, EVs and electricity consumption, leading to both technical and economic advantages. Considering the growing interest in this field, this review paper summarizes state-of-the-art studies of smart charging considering PV power production and electricity consumption. The main aspects of smart charging reviewed are objectives, configurations, algorithms and mathematical models. In order to achieve certain objectives, smart charging schemes can be based on optimization or rule based algorithms. The smart charging schemes also vary in terms of control configuration, i.e., centralized and distributed, and depend on spatial configuration, i.e., houses, workplaces and charging stations. Various charging objectives, such as increasing PV utilization and reducing peak loads and charging cost, are reviewed in this paper. The different charging control configurations, i.e., centralized and distributed, along with various spatial configurations, e.g., houses and workplaces, are also discussed. After that, the commonly employed optimization techniques and rule-based algorithms for smart charging are reviewed. Further research should focus on finding optimal trade-offs between simplicity and performance of smart charging schemes in terms of control configuration, charging algorithms, as well as the inclusion of PV power and load forecast in order to make the schemes suitable for practical implementations.
关键词: electric vehicles,Photovoltaics,energy management system,smart charging,charging optimization,electricity consumption
更新于2025-09-23 15:21:01
-
Study on the Energy Saving Potential for Semi-Transparent PV Window in Southwest China
摘要: To study Semi-Transparent photovoltaic (STPV) windows, experiments were conducted to test the energy potential of STPV window installed in buildings. Two identical rooms were built up as experimental units; one was fitted with amorphous silicon (a-silicon) photovoltaic (PV) windows, and another was fitted with a conventional window. The interactional influence was analyzed among air conditioning energy consumption, lighting energy consumption, and energy generation. It can be concluded that STPV windows could provide 0.26 kWh/per day and save 29% on comprehensive building load on a typical sunny day. In order to further investigate, buildings installed with STPV windows in four typical cities with different climate environments in southwest China were simulated and analyzed. The cooling load of the buildings were all decreased while the heating energy consumption and lighting energy consumption were lightly increased. The energy generation of STPV windows was highest in Lhasa at 402.1 kWh/year. The energy saving potential of STPV windows was predicted with good values; 54% in Kunming.
关键词: electricity consumption,southwest China,building integrated photovoltaic (BIPV),STPV window,energy generation
更新于2025-09-19 17:15:36
-
Supplemental intracanopy far-red radiation to red LED light improves fruit quality attributes of greenhouse tomatoes
摘要: Off-season greenhouse tomatoes have a poor reputation relative to their in-season, field-grown counterparts. Previously, we reported that supplemental intracanopy far-red (700–800 nm, FR) radiation in addition to red (600–700 nm, R) light with light-emitting diodes (LEDs) significantly decreased fruit water content compared to R LEDs alone and high-pressure sodium (HPS) lamps, the most common supplemental lighting used in commercial greenhouses. We hypothesize that supplemental R + FR LEDs during production improves fruit quality attributes (i.e., physicochemical properties, mineral concentrations, and sensory properties) in greenhouse tomatoes compared to R LEDs and HPS lamps. Both intracanopy LED lights increased fruit yield and biomass compared to HPS lamps. R LEDs increased dry matter ratio and improved overall physicochemical proprieties such as total soluble solids (TSS), titratable acidity (TA), and pH; however, R + FR LEDs had more significant effects on all measured attributes than did R LEDs. Similarly, R LEDs increased potassium, magnesium, and calcium content in whole fruit by 30, 74, and 40% compared to HPS lamps, and the addition of FR to R LEDs further increased sodium (Na) content and concentration. Consumer sensory panelists rated higher for sensory attributes (aroma, sweetness, acidity, and texture) of R + FR LED-supplemented tomatoes on a hedonic scale compared to R LED-supplemented ones. Importantly, HPS lamp-supplemented tomatoes had the least desirable quality attributes even when compared at the same ripe stage as LED-supplemented ones. Energy use efficiency (EUE) was not different between R + FR LEDs and R LEDs, which was 5 times higher than that of HPS lamps. Our results demonstrate for the first time that fruit quality attributes of greenhouse tomatoes can be improved by supplemental intracanopy lighting with R + FR LEDs to a degree that consumer panelists could perceive the differences. Therefore, we conclude that supplemental R + FR LEDs is indispensable for improving fruit quality of greenhouse tomatoes during off-season production.
关键词: Sensory evaluation,Electricity consumption,Hydroponics,Mineral nutrients,Solanum lycopersicum,Chromaticity,Intracanopy lighting
更新于2025-09-16 10:30:52