- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Superior light harnessing and charge injection kinetics utilizing mirror-like nano cuboidal ceria coupled with reduced graphene oxide in zinc oxide nanoparticle based photovoltaics
摘要: Efficiency in nanoparticle based photovoltaics is limited by optical transparency, light absorption as well as detrimental back transfer of electron at the hetero-interfaces. Three dimensional (3D) micro/nanostructures with excellent light scattering properties play pivotal role in light harvesting efficiency in DSSCs. Present study deals with the design and development of ternary hybrid photoanode utilizing high quality mirror like nano-cuboidal ceria (CeO2 NC) and 2D- reduced graphene oxide (RGO) sheets in conjunction with ZnO nanoparticle. A ~6% power conversion efficiency has been achieved for photoanode with optimized CeO2 NC loaded with 1 wt% RGO into ZnO NP. CeO2 NC owing to its size and high quality mirror like facets provides a better light harvesting by multiple interactions of incident photon with the absorber as revealed by UV–Vis diffused reflectance and IPCE analysis. 2D- RGO is proposed to act as an electron sink and provides faster electron transport pathway. Inclusion of 2D- RGO sheets yields a better charge injection kinetics (keinj ~ 2.3 × 108 s?1 for ternary, 1.1 × 108 s?1 for reference device) and collection at FTO as well as elevated recombination resistance (Rrec) and photo-induced electron life time (τe), unveiled by Electrochemical Impedance Spectroscopic (EIS) analysis corroborates a reduced reverse tunneling of photo-injected electron at ZnO/sensitizer/redox couple interface.
关键词: Diffusion,Mirror-like,Light scattering material,Reduced graphene oxide,Electrochemical impedance spectroscopy,Nano cuboidal
更新于2025-11-21 11:01:37
-
Influence of thermal oxidation temperature on the microstructure and photoelectrochemical properties of ZnO nanostructures fabricated on the zinc scraps
摘要: In this paper, zinc oxide (ZnO) nanowires were synthesized by thermal oxidation method of zinc scrap at various temperatures ranging between 400 °C and 900 °C under air atmosphere. The influence of different temperature on the phase structures, surface morphologies and photoelectrochemical (PEC) properties of ZnO nanowires were investigated. The characterizations were carried out via X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that annealing temperature played a significant role on surface morphology and phase structure. The band gap energy of the ZnO nanowires changed between 3.12 and 3.194 eV. The photoelectrochemical (PEC) study of the ZnO nanowires was investigated in 0.1 M Na2SO4 aqueous solution. The PEC findings represented that the ZnO nanowire annealed at 600 °C had 252.2 mA/cm2 net photocurrent density which was the best efficiency and at least 10 times higher than that of the lowest one at 1.25 V (vs. VRHE). Mott-Schottky analysis showed that the ZnO nanowires behaved as n-type semiconductor. ZnO nanowire annealed at 600 °C had the highest carrier density value (Nd = 9.03 × 10^23). Moreover, the charge transfer behavior of the ZnO nanowires was determined by means of electrochemical impedance spectroscopy (EIS) measurements. As a result, this work recommends that the ZnO nanowires could be good candidate on PEC applications. Also, thermal oxidation method is an efficient method for fabrication of ZnO nanowires.
关键词: Thermal oxidation,Zn scrap,Electrochemical impedance spectroscopy (EIS),ZnO nanowires,Photoelectrochemical (PEC)
更新于2025-09-23 15:23:52
-
Chemical Sensing Performance of Flower-Like ZnO/PSi Nanostructures via Electrochemical Impedance Spectroscopy Technique
摘要: ZnO nanostructures were synthesized on porous Si (PSi) structures using a method developed by this study known as electric field-assisted aqueous solution technique. The detailed characterization of this nanostructure was performed using atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction, room-temperature photoluminescence and Raman spectroscopy. Electrochemical impedance spectroscopy (EIS) technique was used to detect two classifications of chemical solvents, namely polar and non-polar solvents. Nyquist plots in EIS were utilized to detect chemical solvents (ethanol, acetone, toluene and benzene) exposed to ZnO/PSi nanostructure arrays. The results showed that the grown flower-like ZnO nanostructure arrays served as good chemical sensors with high sensitivity and low power consumption. Meanwhile, the ZnO/PSi nanoflowers exposed to ethanol showed the highest sensitivity (94.6% response) compared to other chemical solutions with the least response exhibited by benzene (68.4% response). It was postulated that the interaction between the solution and oxygen species of ZnO/PSi nanostructure surface induced a resistance change resulting in the release of free electrons that migrated to the conduction band of ZnO/PSi nanoflower structures and reduced the number of surface-adsorbed oxygen species. Subsequently, the changes observed in the Nyquist semicircle diameter and Warburg impedance led to the chemical sensing response.
关键词: ZnO/PSi nanoflower,electric field-assisted aqueous solution technique,Chemical sensors,electrochemical impedance spectroscopy,Nyquist plot
更新于2025-09-23 15:23:52
-
[IEEE 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018) - Paris (2018.7.8-2018.7.13)] 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018) - Tattoo Inks EM Characterization for MRI Interaction Evaluation
摘要: The lack of knowledge about the safety implications of tattooed individuals subjected to Magnetic Resonance Imaging (MRI) may, sometimes, lead to an exaggerate reaction from physicians such as the avoidance of the exam for tattooed patients. To explore the actual risks, in this work, the magnetic and electrical properties of five different tattoo inks have been measured to investigate their interaction with the MRI electromagnetic (EM) fields. Results highlight that the magnetic and electrical behaviour strongly depend on the type of analyzed ink. Magnetic measurements also reveal a different response between the ink solutions and the relative pigments.
关键词: Magnetic Resonance Imaging,electrochemical impedance,magnetization measurements,tattoo ink,Electrical conductivity,tattoo pigment
更新于2025-09-23 15:23:52
-
Properties of Porous Silicon Precipitated with Nickel for Gas Sensors
摘要: The preparation and properties of modified porous silicon is discussed and a proposal of a sensitive layer for a gas detector is presented. The modification is done by precipitation and electrochemical deposition of nickel. The morphology of sample surfaces is examined by atomic force microscopy and scanning electron microscopy (SEM). SEM-coupled energy dispersive spectroscopy is used to analyse the chemical composition of the samples. Magnetic response is measured with a SQUID magnetometer. Electrochemical impedance spectroscopy is used to study the sensitivity of the samples to isopropanol vapour in the presence of alternating electric current. A series of samples prepared with a higher anodic current density show higher sensitivity to isopropanol vapours in comparison to a lower anodic current.
关键词: Electrochemical Impedance Spectroscopy,Porous Silicon,Gas Sensors,SQUID,Electroless Nickel Deposition,Atomic Force Microscopy
更新于2025-09-23 15:22:29
-
Dopamine Binding and Analysis in Undiluted Human Serum and Blood by the RNA-Aptamer Electrode
摘要: Specific analysis of such neurotransmitters as dopamine by the aptamer electrodes in biological fluids is detrimentally affected by non-specific adsorption of media, particularly pronounced at positive charges of the electrode surface at which dopamine oxidizes. Here, we show that dopamine analysis at the RNA-aptamer/cysteamine-modified electrodes is strongly inhibited in undiluted human serum and blood due to non-specific interfacial adsorption of serum and blood components. We demonstrate that non-specific adsorption of serum proteins (but not of blood components) could be minimized when analysis is performed in a flow and injections of serum samples are followed by washing steps in a phosphate buffer solution (PBS) carrier. Under those conditions, the dopamine-aptamer binding affinity in whole human serum of (1.9±0.3)×104 M-1 s-1 was comparable to (3.7±0.3)×104 M-1 s-1 found in PBS, and the dopamine oxidation signal linearly depended on the dopamine concentration, providing the sensitivity of analysis of 73 ± 3 nA μM-1 cm-2 and the LOD of 114 ± 8 nM. The flow-injection apatmer-electrode system was used for direct analysis of basal levels of dopamine in undiluted human serum samples, without using any physical separators (membranes) or filtration procedures. The results suggest a simple strategy for combatting biosurface fouling most pronounced at positive electrode potentials and assist in designing more efficient antifouling strategies for biomedical applications.
关键词: Human serum,Blood,Surface fouling,RNA aptamer electrode,Dopamine,Chronoamperometry,Electrochemical Impedance,Flow-through cell
更新于2025-09-23 15:22:29
-
Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of <i>Salmonella enterica</i> in Chicken Broth
摘要: Food-borne illnesses are a growing concern for the food industry and consumers, with millions of cases reported every year. Consequently, there is a critical need to develop rapid, sensitive, and inexpensive techniques for pathogen detection in order to mitigate this problem. However, current pathogen detection strategies mainly include time-consuming laboratory methods and highly trained personnel. Electrochemical biosensors offer a rapid, low-cost alternative to laboratory techniques, but the electrodes used in these biosensors require expensive nanomaterials to increase their sensitivity, such as noble metals (e.g., platinum, gold) or carbon nanomaterials (e.g., carbon nanotubes, or graphene). Herein, we report the fabrication of a highly sensitive and label-free laser-induced graphene (LIG) electrode that is subsequently functionalized with antibodies to electrochemically quantify the food-borne pathogen Salmonella enterica serovar Typhimurium. The LIG electrodes were produced by laser induction on the polyimide film in ambient conditions and, hence, circumvent the need for high-temperature, vacuum environment, and metal seed catalysts commonly associated with graphene-based electrodes fabricated via chemical vapor deposition processes. After functionalization with Salmonella antibodies, the LIG biosensors were able to detect live Salmonella in chicken broth across a wide linear range (25 to 105 CFU mL?1) and with a low detection limit (13 ± 7 CFU mL?1; n = 3, mean ± standard deviation). These results were acquired with an average response time of 22 min without the need for sample preconcentration or redox labeling techniques. Moreover, these LIG immunosensors displayed high selectivity as demonstrated by nonsignificant response to other bacteria strains. These results demonstrate how LIG-based electrodes can be used for electrochemical immunosensing in general and, more specifically, could be used as a viable option for rapid and low-cost pathogen detection in food processing facilities before contaminated foods reach the consumer.
关键词: biosensor,foodborne pathogens,graphene,food safety,Salmonella Typhimurium,electrochemical impedance spectroscopy
更新于2025-09-23 15:21:01
-
Hydrothermal synthesis of quantum dots dispersed on conjugated polymer as an efficient electrodes for highly stable hybrid supercapacitors
摘要: Hydrothermal synthesis of graphene quantum dots (GQDs) composited with conjugated polymer were investigated the high specific capacitance and cyclic stability of supercapacitor. The situ chemical polymerization method was employed to synthesize the polypyrrole - graphene quantum dots (PPY-GQDs) composite at different concentrations of GQDs. The size, morphology and structural phase of the PPY- GQDs composites was studied by using Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscope (FESEM), Atomic Force Microscope (AFM) and X-ray diffractometry (XRD) techniques respectively. The optical and electrochemical measurements were carried out by using Ultraviolet-Visible (UV–Vis) Absorption spectroscopy, Photoluminescence Spectroscopy (PL) and electrochemical work station. The cyclic voltammetry (CV) results show enhanced current density and area of CV loop with increasing scan rate and the concentration of GQDs. The Supercapacitor was fabricated by two electrodes owns a high energy density 67.8 Wh/kg and 93 Wh/kg at a power density of 1210 W/kg and 1430 W/kg for PGC1 and PGC3 composites. The highest specific capacitance values 467.32 and 647.54F/g are achieved by PGC1 and PGC3 composite compare to pure PPY. The PPY-GQDs composites achieved excellent cycle stability until the 2000 cycle. Thus, it demonstrates that GQDs is playing a unique and important role in improving the performance of a hybrid supercapacitor device.
关键词: Electrochemical Impedance spectra,Graphene quantum dots,Specific capacitance,Supercapacitors,Polypyrrole
更新于2025-09-23 15:21:01
-
Effect of the corona treatment on the microstructure of PVDF probed by electrochemical impedance spectroscopy
摘要: The microstructure of Polyvinylidene Fluoride (PVDF) membrane treated by corona was investigated in this study. The crystalline structure of PVDF membrane was con?rmed by x-ray diffraction (XRD), and the hole structure was evaluated by electrochemical impedance spectroscopy (EIS). It was found that the β phase appears in XRD pattern for treated PVDF, implying the polarization during corona treatment. The variation of membrane resistance suggested that the hole structure of PVDF became more porous with increasing treated time from 0 h to 2 h ?rstly, then became denser with treated time from 2 h to 4 h, and ?nally cracked at the treated time longer than 4 h. All the results indicated that corona treatment would induce the change of the bulk structure of PVDF membrane.
关键词: polyvinylidene ?uoride,corona treatment,electrochemical impedance spectroscopy,hole structure
更新于2025-09-23 15:21:01
-
Application of ZnxLayFezO4 spinel nanomaterial in quantum dot sensitized solar cells
摘要: A novel inorganic spinel nanomaterial with formula Zn0.6093La1.3979Fe0.8650O4 (ZLF) was synthesized and characterized by the X-ray photoelectron spectroscopy (XPS) to determine its stoichiometric formula. The Filed-Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM) images displayed that the ZLF nanoparticles (NPs) had a very fine spherical morphology and average particle sizes in the range of about 5–30 nm. Quantum dot-sensitized solar cells (QDSSCs) were fabricated using the ZLF NPs which were incorporated into the TiO2 pastes of photoanodes. The photoluminescence (PL) spectra of the ZLF NPs and the photoanodes exhibited three maxima plus a weak broad peak at around 420, 460 and 485 plus 530 nm. The lowest intensity of the PL peak for the CdSe cell fabricated using 0.4 %ZLF suggested that it had the least charge recombination and the easiest electron transfer. The photovoltaic parameters of the optimized champion cell containing 0.4 % of ZLF NPs (η = 3.50 %, JSC = 13.11 mA/cm2, VOC = 0.58 V) were boosted compared to those of the ZLF-free reference cell (η = 2.18 %, JSC = 8.70 mA/cm2, VOC = 0.57 V) demonstrating a high improvement of approximately 61 % in the efficiency. The Electrochemical Impedance Spectra (EIS) revealed that the charge transfer resistance (RCT) in the optimum cell was dropped by adding the ZLF NPs into the TiO2 compared to that of the reference ZLF-free cell. Thus, upon adding 0.4 %ZLF, appropriate photocurrent efficiency was attained for the QDSSC because the ZLF nanoparticles were used in a minimum amount in order to speed up the electron transport, decline the recombination and enhance the cell efficiency.
关键词: Photoluminescence spectra,Spectra,ZnLaFeO4nanoparticles,Quantum dot sensitized solar cells,Electrochemical impedance (EIS),XPS
更新于2025-09-23 15:19:57