修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

9 条数据
?? 中文(中国)
  • Self-assembled InAs/InGaAsP/InP quantum dots: Intraband relaxation impacted by ultrathin GaP sublayer

    摘要: The influence of an ultrathin GaP (or GaAs) sublayer on the nonradiative intraband relaxation in InAs/InGaAsP/InP quantum dots (QDs) is investigated. It is found that, based on our studies, the QDs with some heights (e.g., 1.5 nm) and GaP sublayer thicknesses (e.g., 1.03 monolayers) present the first excited state (ES) with higher state degeneracy with respect to ground state (GS), which suggests that the Auger relaxation is triggered more easily. We also find that the energy difference of the ES and GS decreases with increasing sublayer thickness, which suggests that the electron–phonon interaction is affected. This work further presents a study of intraband relaxation for an InAs/InP QD with a GaP or GaAs sublayer. It is found that there is a critical thickness of the GaP sublayer: When the sublayer is less than the critical thickness, the intraband relaxation is only determined by one-longitudinal optical (LO) phonon or two-LO phonons, which is dependent on QD heights. However, with the GaAs sublayer, QDs do not have the above feature. This finding may be helpful for designing and optimizing high-speed QD devices.

    关键词: quantum dots,electron–phonon interaction,InAs/InGaAsP/InP,intraband relaxation,GaP sublayer

    更新于2025-09-23 15:21:01

  • Optical vibration modes in multi-layer quantum dots of polar ternary mixed crystals

    摘要: Within the framework of the dielectric continuum approach and the modified random-element isodisplacement model, the optical vibration modes as well as the corresponding electron-phonon interactions in spherical multi-layer quantum dots (QDs) consisting of ternary mixed crystals (TMCs) are investigated in detail. The dispersion relation and electron-phonon interaction Hamiltonian are obtained. As applications of the present theory, the numerical calculations for the ZnS/ZnxCd1-xS/ZnS and GaAs/AlxGa1-xAs/GaAs QDs are performed and discussed. Considering the "one-mode" and "two-mode" behaviors of the TMCs, the results show that there are 5 and 7 branches of interface/surface optical (IO/SO) phonon modes in the two systems, respectively. It is found that the effects of TMCs have a remarkable influence on the optical phonon frequencies and the electron-phonon interactions. The results also reveal that the presence of the cap layer introduces significant influence on the TMCs effects of optical phonon in multi-layer QDs. We hope that our theoretical results can stimulate further investigations of related photoelectric properties, as well as device applications in multi-layer QDs consisting of TMCs.

    关键词: ternary mixed crystal,electron-phonon interaction,optical vibration mode,multi-layer quantum dot

    更新于2025-09-23 15:21:01

  • Molecular vibrations reduce the maximum achievable photovoltage in organic solar cells

    摘要: The low-energy edge of optical absorption spectra is critical for the performance of solar cells, but is not well understood in the case of organic solar cells (OSCs). We study the microscopic origin of exciton bands in molecular blends and investigate their role in OSCs. We simulate the temperature dependence of the excitonic density of states and low-energy absorption features, including low-frequency molecular vibrations and multi-exciton hybridisation. For model donor-acceptor blends featuring charge-transfer excitons, our simulations agree very well with temperature-dependent experimental absorption spectra. We unveil that the quantum effect of zero-point vibrations, mediated by electron-phonon interaction, causes a substantial exciton bandwidth and reduces the open-circuit voltage, which is predicted from electronic and vibronic molecular parameters. This effect is surprisingly strong at room temperature and can substantially limit the OSC’s efficiency. Strategies to reduce these vibration-induced voltage losses are discussed for a larger set of systems and different heterojunction geometries.

    关键词: molecular vibrations,exciton bands,electron-phonon interaction,organic solar cells,photovoltage

    更新于2025-09-23 15:19:57

  • Transport Through a Quantum Dot with Electron-Phonon Interaction

    摘要: We theoretically study the electrical transport properties of a single level quantum dot connected to two normal conducting leads, which is coupled to the lattice vibrations. We determine the current through the quantum dot in two different situations: time-independent and time-averaged. In all situations we consider three cases: when there is no electron-phonon interaction, when the dot electrons interact with optical phonons or when they interact with acoustic phonons. At finite temperatures we take into account the temperature dependence of the chemical potential. We treat the electron-phonon interaction by the canonical transformation method. In the case of electron-longitudinal optical phonon interaction the spectrum contains a subpeak. In the case of electron-acoustic phonon interaction the spectrum is continuous. In the time-averaged situation many parasite peaks appear in the spectrum, due to the external time-modulation.

    关键词: optical phonon,electron-phonon interaction,acoustic phonon,electron,quantum dot

    更新于2025-09-16 10:30:52

  • Electron Population Dynamics in Optically Pumped Asymmetric Coupled Ge/SiGe Quantum Wells: Experiment and Models

    摘要: n-type doped Ge quantum wells with SiGe barriers represent a promising heterostructure system for the development of radiation emitters in the terahertz range such as electrically pumped quantum cascade lasers and optically pumped quantum fountain lasers. The nonpolar lattice of Ge and SiGe provides electron–phonon scattering rates that are one order of magnitude lower than polar GaAs. We have developed a self-consistent numerical energy-balance model based on a rate equation approach which includes inelastic and elastic inter- and intra-subband scattering events and takes into account a realistic two-dimensional electron gas distribution in all the subband states of the Ge/SiGe quantum wells by considering subband-dependent electronic temperatures and chemical potentials. This full-subband model is compared here to the standard discrete-energy-level model, in which the material parameters are limited to few input values (scattering rates and radiative cross sections). To provide an experimental case study, we have epitaxially grown samples consisting of two asymmetric coupled quantum wells forming a three-level system, which we optically pump with a free electron laser. The benchmark quantity selected for model testing purposes is the saturation intensity at the 1→3 intersubband transition. The numerical quantum model prediction is in reasonable agreement with the experiments and therefore outperforms the discrete-energy-level analytical model, of which the prediction of the saturation intensity is off by a factor 3.

    关键词: silicon–germanium heterostructures,intersubband photoluminescence,optical pumping,intersubband transitions,electron–phonon interaction,infrared spectroscopy,quantum wells,free electron laser,terahertz quantum cascade laser

    更新于2025-09-16 10:30:52

  • Gallium Oxide || Low-field and high-field transport in β-Ga2O3

    摘要: β-Ga2O3 has recently emerged as a novel wide-bandgap semiconductor with immense potential for applications in power electronics and optoelectronics. Experimental advancements in the past 5 years have been significant toward realizing commercial β-Ga2O3 devices in the near future [1–7]. Matured crystal growth and processing techniques make the material further promising [8–10]. In terms of power electronic applications, MOSFETs based on this material have been demonstrated that could withstand record high voltages [11, 12]. The accuracy of n-type doping and the difficulty of p-type doping make electrons the primary charge carriers in β-Ga2O3. Although β-Ga2O3 has lower electron mobility compared to other wide-bandgap semiconductors, it is found to have a superior Baliga’s figure of merit that jointly accounts for on-state resistance and breakdown voltage [4]. So it is important to investigate in rigor the fundamentals behind β-Ga2O3 material properties that could be beneficial to gain an understanding on the causes that control mobility and breakdown voltage. There are theoretical reports on fundamental materials aspects including electronic structure [13] and optical properties [14], lattice dynamical and dielectric properties [15], and thermal properties [16, 17] as well. The primary physics behind both mobility (and hence the device on resistance) and breakdown voltage lies in the electron transport phenomenon. There have been a few experimental reports that try to characterize the electron transport and scattering mechanisms in β-Ga2O3 with Hall measurements being reported a few times to predict temperature dependence and also crystal orientation dependence of the electron mobility [18, 19]. On the other hand, we are making a systemic study on the theoretical understanding of electron transport in β-Ga2O3 starting from the first principles [20–22]. The main idea is to follow a bottom-up approach in order to develop an understanding of the near-equilibrium and far-from-equilibrium electron dynamics in β-Ga2O3. This is unique compared to conventional semiconductors in a way that β-Ga2O3 has a low-symmetry crystal structure and a fairly large primitive unit cell that gives rise to many phonon modes. On several occasions, the traditional notions of electron transport that are applicable to Si and GaAs actually do not quite hold well in the case of β-Ga2O3. In this chapter, we attempt to provide a comprehensive picture of electron transport in β-Ga2O3 under low and moderately high electric fields based on our work in the recent years.

    关键词: electron-phonon interaction,β-Ga2O3,electron mobility,power electronics,optoelectronics,electron transport,velocity-field curves,wide-bandgap semiconductor

    更新于2025-09-09 09:28:46

  • The Correlation between the Energy Gap and the Pseudogap Temperature in Cuprates: The YCBCZO and LSHCO Case

    摘要: The paper analyzes the influence of the hole density, the out-of-plane or in-plane disorder, and the isotopic oxygen mass on the zero temperature energy gap (2Δ(0)) Y1???Ca??Ba2(Cu1???Zn??)3O7??? (YCBCZO) and La1.96???Sr??Ho0.04CuO4 (LSHCO) superconductors. It has been found that the energy gap is visibly correlated with the value of the pseudogap temperature (???). On the other hand, no correlation between 2Δ(0) and the critical temperature (????) has been found. The above results mean that the value of the dimensionless ratio 2Δ(0)/???????? can vary very strongly together with the chemical composition, while the parameter 2Δ(0)/??????? does not change significantly. In the paper, the analytical formula which binds the zero temperature energy gap and the pseudogap temperature has been also presented.

    关键词: energy gap,pseudogap temperature,superconductors,cuprates,electron-phonon interaction,electron-electron correlations

    更新于2025-09-09 09:28:46

  • Quasiparticle dynamics across the full Brillouin zone of Bi2Sr2CaCu2O8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    摘要: A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy, which significantly limits the accessible momentum space. Using 20.15 eV, 12 fs pulses, we show for the first time the evolution of quasiparticles in the antinodal region of Bi2Sr2CaCu2O8+d and demonstrate that non-monotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in stark contrast to the monotonic relaxation in the nodal and off-nodal regions.

    关键词: electron-phonon interaction,high-temperature superconductors,cuprate,time-resolved ARPES,nodal-antinodal dichotomy,angle-resolved photoemission spectroscopy,quasiparticles

    更新于2025-09-04 15:30:14

  • Impact of Low‐Frequency Vibrations on Charge Transport in High‐Mobility Organic Semiconductors

    摘要: Despite decades of intensive studies of charge transport in organic semiconductors (OSs), understanding of mechanisms underpinning efficient charge transport in them remains elusive. Recently, it has been suggested that low-frequency (LF) vibrations are a limiting factor of charge transport in high-mobility OSs. Nevertheless, the relationship between the molecular structure, crystal packing, LF vibrations, and charge transport is still obscured. This hinders the focused search of high-mobility OSs so that researchers rely mainly on trial-and-error method. This review presents theoretical and experimental approaches to studying the LF vibrations and their role in charge transport with a focus on recent results. It is anticipated that tight cooperation between experimentalists and theorists will yield an advanced understanding of LF vibrations in OSs and their impact on charge transport. This will guide the design of novel high-mobility organic semiconductors for organic electronics.

    关键词: structure–property relationship,organic electronics,Raman spectroscopy,electron–phonon interaction,charge mobility

    更新于2025-09-04 15:30:14