修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

6 条数据
?? 中文(中国)
  • Selective Detection of Trinitrophenol by Amphiphilic Dimethylaminopyridine-Appended Zn(II)phthalocyanines at the Near-Infrared Region

    摘要: Novel amphiphilic Zn(II)phthalocyanines (ZnPcs) peripherally substituted with four and eight dimethylaminopyridinium units (ZnPc1 and ZnPc2) were synthesized by cyclotetramerization of the corresponding phthalonitriles. The effect of aggregation and photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation under light irradiation) properties was investigated. The chemosensing ability of ZnPcs toward explosive nitroaromatic compounds was explored in aqueous medium. This study demonstrates that ZnPc1 and ZnPc2 show fluorescence quenching behavior upon interaction with different nitro analytes and show unprecedented selectivity toward 2,4,6-trinitrophenol with a limit of detection (LOD) of 0.7?1.1 ppm with a high quenching rate constant (Ksv) of 1.6?2.02 × 105. The near-infrared (NIR) fluorescence in thin films was quenched efficiently because of the photoinduced electron-transfer process through strong intermolecular π?π and electrostatic interactions. The sensing process is highly reversible and free from the interference of other commonly encountered nitro analytes. Further, experiments were performed to demonstrate the use of ZnPcs as efficient heterogeneous photocatalysts in the reduction of nitro explosives. The smart dual performance of multicharged ZnPcs in aqueous media quantifies them as attractive candidates in developing sensor materials at the NIR region and to possibly convert the toxic explosives into useful scaffolds. These results provide an interesting perspective toward elaboration of stable fluorescent systems for the selective sensing behavior of nitro explosives and their facile heterogeneous catalytic behavior in the reduction reactions.

    关键词: trinitrophenol,photocatalysis,explosive detection,near-infrared,fluorescence quenching,dimethylaminopyridinium,Zn(II)phthalocyanines

    更新于2025-11-21 11:08:12

  • AIE active fluorescent organic nanoaggregates for selective detection of phenolic-nitroaromatic explosives and cell imaging

    摘要: Development of organic nanoparticles with high fluorescence, good biocompatibility along with strong resistance to photobleaching through simple synthetic routes is important for diverse applications such as sensing and bioimaging. Herein, we present the development of a pyrene excimer nanoaggregate which shows aggregation induced emission (AIE) effect in a solvent mixture of THF and water. The pyrene based fluorescent probe, dimethyl-5-(pyren-1-ylmethyleneamino)isophthalate (5-DP) was synthesized through a simple single step condensation reaction from inexpensive reagents. The photophysical studies of nanoaggregated system further corroborates the AIE active behavior of 5-DP probe at different water fractions (?w = 0% to 90%), where the hydrogen bonding interaction between imine and water molecules led to suppression of photoinduced electron transfer (PET) inducing significant enhancement in fluorescence. The highly photostable nanoaggregates were explored as a selective fluorescence “turn off” sensor for phenolic nitroaromatics and the chemo-selectivity was highly pronounced for 2,4,6-trinitrophenol (picric acid), that showed efficient quenching in aqueous as well as solid phase, with a detection limit of 10 nM in aqueous medium. The quenching efficiency of the nanoaggregates can be ascribed to a combination of factors including efficient fluorescence resonance energy transfer, inner filter effect and coulombic interaction between picric acid and the aggregated probe molecules. Further, random aggregation of the pyrene derivative could be controlled for the formation of fluorescent spherical nanoparticles using Pluoronics P-123 block copolymers as encapsulating agents. The resulting composite could be used as a neoteric cell imaging probe with significantly less cytotoxicity, thus showing their potential biological applications.

    关键词: aggregation induced emission,electron transfer,explosive detection,cell imaging,Fluorescent organic nanoaggregates

    更新于2025-11-21 11:03:13

  • Peptide-Functionalized Quantum Dots for Rapid Label-Free Sensing of 2,4,6-Trinitrotoluene

    摘要: Explosive compounds, such as 2,4,6-trinitrotoluene (TNT), pose a great concern in terms of both global public security and environmental protection. There are estimated to be hundreds of TNT contaminated sites all over the world, which will affect the health of humans, wildlife, and the ecosystem. Clearly, the ability to detect TNT in soils, water supplies, and wastewater is important for environmental studies but also important for security, such as in ports and boarders. However, conventional spectroscopic detection is not practical for on-site sensing because it requires sophisticated equipment and trained personnel. We report a rapid and simple chemical sensor for TNT by using TNT binding peptides which are conjugated to fluorescent CdTe/CdS quantum dots (QDs). QDs were synthesized in the aqueous phase, and the peptide was attached directly to the surface of the QDs by using thiol groups. The fluorescent emission from the QDs was quenched in response to the addition of TNT. The response could even be observed by the naked eye. The limit of detection from fluorescence spectroscopic measurement was estimated to be approximately 375 nM. In addition to the rapid response (within a few seconds), selective detection was demonstrated. We believe this label-free chemical sensor contributes to progress for the on-site explosive sensing.

    关键词: quantum dots (QDs),explosive detection,2,4,6-trinitrotoluene (TNT),label-free sensing,peptide-functionalized

    更新于2025-11-14 15:23:50

  • On the combination of luminescent rare earth MOF and rhodamine dopant with two sensing channels for picric acid

    摘要: The present paper reported a hybrid structure for the optical recognition of PA (picric acid). This dye-MOF structure, named as R6h@EuBTC, consisted of a supporting matrix based on rare earth MOF and a sensing probe based on rhodamine dye, which was con?rmed using XRD, IR, thermal and photophysical analysis. R6h@EuBTC's rhodamine absorption in visible region was enhanced by increasing PA concentrations, showing obvious color change and consequently colorimetric sensing. R6h@EuBTC's rhodamine emission component was increased by increasing PA concentrations, while its Eu emission component was slightly quenched by increasing PA concentrations, which offered self-calibrated sensing signals for ratiometric ?uorescent sensing. Linear response and good selectivity were observed for both sensing channels with LOD of 3.9 μM. R6h@EuBTC's sensing mechanism towards PA was the combination of two procedures, which were the emission turn on effect of rhodamine component triggered by PA-released protons and the emission turn off effect of Eu component caused by its electron transfer procedure to PA, respectively. R6h@EuBTC's novelty was its two sensing channels and the practicability of naked eye detection.

    关键词: Ratiometric sensing,Optical sensing,Explosive detection,Naked eye detection

    更新于2025-09-19 17:15:36

  • Hierarchical Laser-Patterned Silver/Graphene Oxide Hybrid SERS Sensor for Explosive Detection

    摘要: We demonstrate an ultrafast laser-ablated hierarchically patterned silver nanoparticle/graphene oxide (AgNP/GO) hybrid surface-enhanced Raman scattering (SERS) substrate for highly sensitive and reproducible detection of an explosive marker 2,4-dinitrotoluene (2,4-DNT). A hierarchical laser-patterned silver sheet (Ag?S) is achieved by ultrafast laser ablation in air with pulse energies of 25, 50, and 100 μJ. Multiple laser pulses at a wavelength of 800 nm and a pulse repetition rate of 50 fs at 1 kHz are directly focused on Ag?S to produce and deposit AgNPs onto Ag?S. The surface morphology of ablated Ag?S was evaluated using atomic force microscopy, optical pro?lometry, and ?eld emission scanning electron microscopy (FESEM). A rapid increase in the ablation rate with increasing laser energy was observed. Selected area Raman mapping is performed to understand the intensity and size distribution of AgNPs on Ag?S. Further, GO was spin-coated onto the AgNPs produced by ultrafast ablation on Ag?S. The hierarchical laser-patterned AgNP/GO hybrid structure was characterized using FESEM, high-resolution transmission electron microscopy, X-ray di?raction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Further, hierarchical laser-patterned AgNP/GO hybrid structures have been utilized as SERS-active substrates for the selective detection of 2,4-DNT, an explosive marker. The developed SERS-active sensor shows good stability and high sensitivity up to picomolar (pM) concentration range with a Raman intensity enhancement of ~1010 for 2,4-DNT. The realized enhancement of SERS intensity is due to the cumulative e?ect of GO coated on Ag?S as a proactive layer and AgNPs produced by ultrafast ablation.

    关键词: silver nanoparticle/graphene oxide (AgNP/GO) hybrid,ultrafast laser ablation,explosive detection,surface-enhanced Raman scattering (SERS),2,4-dinitrotoluene (2,4-DNT)

    更新于2025-09-19 17:13:59

  • Porous Halide Perovskite–Polymer Nanocomposites for Explosive Detection with a High Sensitivity

    摘要: A porous halide perovskite–polymer nanocomposite is developed using a freeze-drying process. Such a composite shows strong fluorescence quenching after exposure to explosive nitroaromatics, nitroamines, and nitrate esters with a sensitivity of a few nanograms. In addition, this composite is robust against moisture and solvents, showing negligible change in fluorescence intensities after submersion in water, alcohol, and acid, base, and salt solutions. Transient absorption spectroscopy studies further disclose that the explosive chemical introduces more trap states into the perovskite that contributes to fluorescence quenching of the perovskite.

    关键词: explosive detection,TNT,perovskite,composites

    更新于2025-09-09 09:28:46