- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2020
- fast processes in solids
- femtosecond interferometry
- femtosecond laser radiation
- Optoelectronic Information Science and Engineering
- Prokhorov General Physics Institute, Russian Academy of Sciences; National Research Nuclear University MEPhI
-
Sequential Evolution of Colored Copper Surface Irradiated by Defocused Femtosecond Laser
摘要: An effective method for the fabrication of sequential colors on copper by adjusting femtosecond laser defocusing distance is proposed. The sequential evolution tendency of induced colors by adjusting laser defocusing distance is carried out. Corresponding mechanisms are revealed by different kinds of surface structures. Angle-resolved spectrum and simultaneously derived hydrophobicity are also investigated.
关键词: hydrophobicity,femtosecond laser,sequential colors,defocus-dependent
更新于2025-09-23 15:19:57
-
Chemical effects during the formation of various types of femtosecond laser-generated surface structures on titanium alloy
摘要: In this contribution, chemical, structural, and mechanical alterations in various types of femtosecond laser-generated surface structures, i.e., laser-induced periodic surface structures (LIPSS, ripples), Grooves, and Spikes on titanium alloy, are characterized by various surface analytical techniques, including X-ray diffraction and glow-discharge optical emission spectroscopy. The formation of oxide layers of the different laser-based structures inherently influences the friction and wear performance as demonstrated in oil-lubricated reciprocating sliding tribological tests (RSTTs) along with subsequent elemental mapping by energy-dispersive X-ray analysis. It is revealed that the fs-laser scan processing (790 nm, 30 fs, 1 kHz) of near-wavelength-sized LIPSS leads to the formation of a graded oxide layer extending a few hundreds of nanometers into depth, consisting mainly of amorphous oxides. Other superficial fs-laser-generated structures such as periodic Grooves and irregular Spikes produced at higher fluences and effective number of pulses per unit area present even thicker graded oxide layers that are also suitable for friction reduction and wear resistance. Ultimately, these femtosecond laser-induced nanostructured surface layers efficiently prevent a direct metal-to-metal contact in the RSTT and may act as an anchor layer for specific wear-reducing additives contained in the used engine oil.
关键词: Tribology,Femtosecond laser processing,GD-OES,Surface chemistry,XRD,LIPSS,Laser-induced periodic surface structures,Laser-induced oxide layer
更新于2025-09-23 15:19:57
-
Efficient generation of nitrogen vacancy centers by laser writing close to the diamond surface with a layer of silicon nanoballs
摘要: We proposed a method to effectively fabricate negatively charged nitrogen vacancy (NV?) centers close to the diamond surface by applying femtosecond laser writing technique. With a thick layer of silicon (Si) nanoballs coated, diamond surface was irradiated by high-fluence femtosecond laser pulses. A large number of NV? centers were created around the laser ablation crater area without thermal annealing. The distribution of the NV? centers was expanded to about 50 μm away from the crater center. To demonstrate the function of Si nanoballs, we performed the exactly same laser illumination process on the bare region of the sample surface. In this case, only a few NV? centers were generated around ablation crater. At distance of 32 μm away from crater centers, the NV? density for the case with nanoballs was up to 15.5 times higher compared to the case without nanoballs. Furthermore, we also investigated the influence of laser fluence and pulse number on the NV? density for the case with Si-nanoball layer. Finally, the formation mechanism of NV? centers and the role of Si nanoballs were explained via Coulomb explosion model. The method is demonstrated to be a promising approach to efficiently and rapidly fabricate NV? centers close to the surface of the diamond, which are significant in quantum sensing. Furthermore, the results provide deep insights into complex light-matter interactions.
关键词: single emitters,nitrogen vacancy centers in diamond,silicon nanoballs,femtosecond laser technique
更新于2025-09-23 15:19:57
-
Femtosecond-laser-irradiation-induced structural organization and crystallinity of Bi2WO6
摘要: controlling the structural organization and crystallinity of functional oxides is key to enhancing their performance in technological applications. in this work, we report a strong enhancement of the structural organization and crystallinity of Bi2Wo6 samples synthetized by a microwave-assisted hydrothermal method after exposing them to femtosecond laser irradiation. X-ray diffraction, UV-vis and Raman spectroscopies, photoluminescence emissions, energy dispersive spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy were employed to characterize the as-synthetized samples. To complement and rationalize the experimental results, first-principles calculations were employed to study the effects of femtosecond laser irradiation. Structural and electronic effects induced by femtosecond laser irradiation enhance the long-range crystallinity while decreasing the free carrier density, as it takes place in the amorphous and liquid states. these effects can be considered a clear cut case of surface-enhanced Raman scattering.
关键词: structural organization,Bi2WO6,femtosecond laser irradiation,crystallinity,microwave-assisted hydrothermal method
更新于2025-09-23 15:19:57
-
Investigation of optical fiber-tip probes for common and ultrafast SERS
摘要: In this study, we performed a three-dimensional computational experiment on ultrashort pulse propagation in an optical fiber-tip probe that is decorated with gold nanoparticles (NPs) using a constant structure for the probe’s dielectric taper and different spatial configurations of the gold nanoparticles. Interestingly, a hot spot with the highest amplitude of the electric field was found not along the same chain of the NPs but between terminal NPs of neighboring chains of NPs at the probe’s tip (the amplitude of the electric field in the hot spots between the NPs along the same chain was of the order of 101, while that between terminal NPs of neighboring chains was of the order of 103). We eventually identified a configuration with only six terminal nanoparticles (Config4) which is characterized by the highest electric field amplitude enhancement and can provide the highest spatial resolution in the SERS interrogation of an object of interest. The ultrashort temporal responses of the hot spots for all configurations exhibited relatively high pulse elongation (relative elongation was greater than 4.3%). At the same time, due to the reflection of the incident pulse and consequent interference, the temporal responses of most hot spots contained several peaks for all configurations except for the optimum Config4. Nonetheless, the ultrashort temporal responses of all hot spots for Config4 were characterized by a single peak but with a relatively large pulse elongation (relative elongation was 234.1%). The results indicate that further examination of this new structure of a nanoparticles-coated optical fiber-tip probe with only six terminal NPs may provide attractive characteristics for its practical applications.
关键词: gold nanoparticles,femtosecond pulse,optical fiber-tip probe,ultrafast nanophotonics.,surface-enhanced Raman spectroscopy,temporal response
更新于2025-09-23 15:19:57
-
Ytterbium laser system for studying parametric amplification of femtosecond pulses with a centre wavelength of a??2 ??m
摘要: A laser system is developed with an optical synchronisation of a femtosecond signal with a pump channel. The signal of a driving ytterbium fibre laser with a 60 MHz repetition rate of stretched femtosecond pulses is amplified in energy from several nanojoules to 0.4 mJ at a pulse repetition rate of 3 kHz in a wide-band amplifier and then is compressed in time to 250 fs. The obtained radiation is used for generating femtosecond laser pulses with a centre wavelength of ~2 mm, pulse energy of above 20 mJ, duration of several field oscillations, and phase stabilisation between the electromagnetic field and envelope. The other pulse of the driving fibre laser provides optical synchronisation and a minimal time delay and is directed to a regenerative Yb : YAG disk amplifier for amplification to an energy of 4 mJ at a pulse repetition rate of 3 kHz and duration of 20 ps. A multipass disk amplifier is developed for further increasing the energy of pump chirped pulses to an energy of 70 mJ at a pulse repetition rate of 10 Hz and duration of 400 ps for studying parametric amplification under sub-nanosecond pumping.
关键词: parametric amplification,Yb :YAG disk amplifier,ytterbium fibre laser,femtosecond pulses,pulse compression
更新于2025-09-23 15:19:57
-
Effect of irradiation time in the synthesis of Au-Ag nanoalloys by femtosecond laser
摘要: The synthesis of metallic nanoparticles can be performed by femtosecond laser-induced photoreduction of the metallic ion solution. Due to hydrogen radical and the solvated electron generated through the interaction of ultrafast laser and water medium, the dissolved metallic ion in the medium can be converted to their respective metallic atom and then precipitated into nanoparticles. When there is more than one metallic ion available in the solution, alloy nanoparticles can be generated. One parameter that affects this laser-based synthesis was the duration of laser irradiation time that has an advantage for size modification of nanoparticles. In this work, we have synthesized Au-Ag nanoalloys from the mixture of Au and Ag ion in water medium added with 0.01wt% polyvinylpyrrolidone (PVP) as a capping agent and irradiated for 5 and 10 minutes. The result showed that there was linear shifting in surface plasmon resonance (SPR) of the nanoalloys in respect with their volume fraction of the ions. The results also revealed that the nanoparticle size was indeed reduced as the laser irradiation was prolonged, i.e., Au50Ag50 has a particle size of 7.98 nm and 5.18 nm for 5 and 10 minutes irradiation time, respectively.
关键词: irradiation time,Au-Ag nanoalloys,surface plasmon resonance,femtosecond laser,nanoparticle size
更新于2025-09-23 15:19:57
-
The efficacy of plasmonic model to calculate HSFL nanostructure period in Sapphire
摘要: In this work, we try to determine all the period of nanostructure subwavelength that can be observed during irradiation by multipulse femtosecond laser in dielectric materials. For this, we use a generalized plasmonic model developed previously to follow the evolution of the periods of the nanostructures on the Sapphire material and their optical properties according to electron-holes plasma excitation and varying the optical spectrum between 300 and 1400 nm. We ?nd a nanostructure area where all the period observed experimentally must be included inside it. This plasmonic model shows its e?ciency and its precision on a nanoscale.
关键词: Sapphire,plasmonic model,HSFL nanostructure,femtosecond laser,electron-holes plasma
更新于2025-09-23 15:19:57
-
Ultrafast dynamics observation during femtosecond laser-material interaction
摘要: Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application; especially femtosecond laser processing materials present the unique mechanism of laser-material interaction. Under the extreme nonequilibrium conditions imposed by femtosecond laser irradiation, many fundamental questions concerning the physical origin of the material removal process remain unanswered. In this review, cutting-edge ultrafast dynamic observation techniques for investigating the fundamental questions, including time-resolved pump-probe shadowgraphy, ultrafast continuous optical imaging, and four-dimensional ultrafast scanning electron microscopy, are comprehensively surveyed. Each technique is described in depth, beginning with its basic principle, followed by a description of its representative applications in laser-material interaction and its strengths and limitations. The consideration of temporal and spatial resolutions and panoramic measurement at different scales are two major challenges. Hence, the prospects for technical advancement in this field are discussed finally.
关键词: ultrafast dynamics,ultrafast continuous optical imaging,femtosecond laser manufacturing,4D ultrafast scanning electron microscopy,pump-probe shadowgraphy
更新于2025-09-23 15:19:57
-
Femtosecond laser additive and subtractive micro-processing: enabling a high-channel-density silica interposer for multicore fibre to silicon-photonic packaging
摘要: Great strides have been made over the past decade to establish femtosecond lasers in advanced manufacturing systems for enabling new forms of non-contact processing of transparent materials. Research advances have shown that a myriad of additive and subtractive techniques is now possible for flexible 2D and 3D structuring of such materials with micro- and nano-scale precision. In this paper, these techniques have been refined and scaled up to demonstrate the potential for 3D writing of high-density optical packaging components, specifically addressing the major bottleneck for efficiently connecting optical fibres to silicon photonic (SiP) processors for use in telecom and data centres. An 84-channel fused silica interposer was introduced for high-density edge coupling of multicore fibres (MCFs) to a SiP chip. Femtosecond laser irradiation followed by chemical etching (FLICE) was further harnessed to open alignment sockets, permitting rapid assembly with precise locking of MCF positions for efficient coupling to laser written optical waveguides in the interposer. A 3D waveguide fanout design provided an attractive balancing of low losses, mode-matching, high channel density, compact footprint, and low crosstalk. The 3D additive and subtractive processes thus demonstrated the potential for higher scale integration and rapid photonic assembly and packaging of micro-optic components for telecom interconnects, with possible broader applications in integrated biophotonic chips or micro-displays.
关键词: multicore fibre,waveguide fanout,silicon photonics interposer,space-division multiplexing,fibre socket,femtosecond laser micro-processing,photonic packaging
更新于2025-09-23 15:19:57