- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Valencia (2018.7.22-2018.7.27)] IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium - Inshore Ship Detection in Sar Images Based on Deep Neural Networks
摘要: Inshore ship detection in SAR image faces difficulties on correctly identifying near-shore ships and onshore objects. This article proposes a multi-scale full convolutional network (MS-FCN) based sea-land segmentation method and applies a rotatable bounding box based object detection method (DR-Box) to solve the inshore ship detection problem. The sea region and land region are separated by MS-FCN then DR-Box is applied on sea region. The proposed method combines global information and local information of SAR image to achieve high accuracy. The networks are trained with Chinese Gaofen-3 satellite images. Experiments on the testing image show most inshore ships are successfully located by the proposed method.
关键词: object detection networks,full convolutional networks,deep learning,inshore ship detection,Synthetic aperture radar
更新于2025-09-23 15:21:21