修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

1 条数据
?? 中文(中国)
  • [IEEE 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Munich, Germany (2019.6.23-2019.6.27)] 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) - Towards Storage of Sub-Megahertz Single Photons in Gradient Echo Memory

    摘要: Quantum repeaters are foundational to establishing the long distance quantum communication channels necessary to create a global communication network. A quantum memory capable of storing optical quantum states is an integral component of the quantum repeater. A wide variety of mechanisms for implementing an optical quantum memory have been investigated, ranging from simple optical delay lines to complicated photon echo schemes. The scheme of interest here is the gradient echo memory (GEM). GEM has been demonstrated to be one of the most efficient memory schemes to date, with up to 87% recall efficiency and up to 1ms coherence time when performed in a cold atomic ensemble of 87Rb atoms. Until now, GEM has only been investigated with weak coherent pulses as no single photon source met the demanding spectral requirements of the memory protocol. In particular, it requires sub-megahertz linewidth photons at the atomic transitions of 87Rb. A compatible source has been developed utilising cavity-enhanced spontaneous parametric downconversion (SPDC) generating photons with a bandwidth of 429 ± 10 kHz. This is, to our knowledge, the narrowest single photon bandwidth from SPDC to date. Integration with this source enables single photon storage for the first time using GEM and allows for its single photon level characteristics to finally be investigated. Single-photon quantum memory opens up the prospect of using the system as a quantum optical gate. Storing multiple single photon states simultaneously in the quantum memory can potentially give rise to photon-photon interactions due to cross phase modulation.

    关键词: single photon source,gradient echo memory,quantum repeaters,sub-megahertz linewidth photons,quantum memory

    更新于2025-09-11 14:15:04