修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

4 条数据
?? 中文(中国)
  • Hierarchical MoS2-Based Onion-Flower-like Nanostructures with and without Seedpods via Hydrothermal Route Exhibiting Low Turn-on Field Emission

    摘要: Herein, we report facile hydrothermal synthesis of hierarchical MoS2 -based nanomorphs (displaying onion-flower-like features) with the primary focus on field-emitter applications. The synthesized nanostructures were characterized physicochemically to understand their basic structural and morphological features. Interesting nanoscale morphological evolution of onion-flower-like MoS2—from plain nanoflowers to those containing seedpods—is observed with the change in hydrothermal reaction time from 9 h to 21 h. Peculiarly, MoS2 nanomorphs with only onion-flower-like morphology displayed lower turn-on field value of 3.7 V/μm as compared to 4.2 V/μm for the nanoflowers containing seedpod-like particles. This might be attributed to the possibility of an easy electron conduction path available for the petals in plain nanoflowers, which may be impeded by the seedpod-like particles in the latter case.

    关键词: Molybdenum disulfide,hierarchical nanostructures,field emission,hydrothermal

    更新于2025-09-23 15:23:52

  • Self-Aligned Hierarchical ZnO Nanorod/NiO Nanosheet Arrays for High Photon Extraction Efficiency of GaN-Based Photonic Emitter

    摘要: Advancements in nanotechnology have facilitated the increased use of ZnO nanostructures. In particular, hierarchical and core–shell nanostructures, providing a graded refractive index change, have recently been applied to enhance the photon extraction e?ciency of photonic emitters. In this study, we demonstrate self-aligned hierarchical ZnO nanorod (ZNR)/NiO nanosheet arrays on a conventional photonic emitter (C-emitter) with a wavelength of 430 nm. These hierarchical nanostructures were synthesized through a two-step hydrothermal process at low temperature, and their optical output power was approximately 17% higher than that of ZNR arrays on a C-emitter and two times higher than that of a C-emitter. These results are due to the graded index change in refractive index from the GaN layer inside the device toward the outside as well as decreases in the total internal re?ection and Fresnel re?ection of the photonic emitter.

    关键词: ZnO nanorod/NiO nanosheet,photon extraction e?ciency,photonic emitter,self-align,hierarchical nanostructures

    更新于2025-09-23 15:19:57

  • Facile synthesis of Ag/ZnO metal–semiconductor hierarchical photocatalyst nanostructures <i>via</i> the galvanic-potential-enhanced hydrothermal method

    摘要: Hierarchical metal–semiconductor nanostructures (NSs) composed of a backbone made of Ag nanowire and ZnO nanorod (NR) branches were successfully prepared using the galvanic-potential-enhanced hydrothermal method. A galvanic cell structure was formed between an Al bottle anode that was used as a hydrothermal reactor and an Ag NW cathode dispersed in a hydrothermal solution. As a result, the contact-potential-driven hydrothermal growth of the ZnO NRs on the sidewalls of the Ag NWs could be achieved. The morphological and microstructure characterization confirmed the formation of well-arranged hierarchical NSs composed of Ag NW trunk and ZnO NR branch structures. The photocatalytic properties of the hierarchical Ag/ZnO NSs were investigated by degrading methylene blue (MB) dye as a model pollutant. It was found that the hierarchical Ag/ZnO NSs demonstrated a more than two-fold faster degradation rate than the pristine ZnO NSs. The high-performance photocatalytic activity of the Ag/ZnO hierarchical NSs was attributed to the synergetic effect of the metallic Ag NWs and the ZnO NRs that enhanced the charge separation and diffusion by suppressing charge recombination, as well as enhanced reaction sites and light absorption.

    关键词: methylene blue degradation,Ag/ZnO,photocatalytic activity,hierarchical nanostructures,galvanic-potential-enhanced hydrothermal method

    更新于2025-09-04 15:30:14

  • Carbonized Bamboos as Excellent 3D Solar Vapor‐Generation Devices

    摘要: Given the global challenges of water scarcity, solar-driven vapor generation has become a renewed topic as an energy-efficient way for clean water production. Here, it is revealed that bamboo, as a natural hierarchical cellular material, can be an excellent 3D solar vapor-generation device by a simple carbonization progress. A floating carbonized bamboo sample evaporates water with an extremely high vapor-generation rate of 3.13 kg m?2 h?1 under 1 sun illumination. The high evaporation rate is achieved by the unique natural structure of bamboos. The inner wall of bamboo recovers the diffuse light energy and the thermal radiation heat loss from the 3D bamboo bottom, and the outer wall captures energy from the warmer environment. The high evaporation rate is also attributed to reduced vaporization enthalpy of water confined in the bamboo mesh. Such bamboo-based high-performance, low-cost, self-cleaning, solid durable, and scalable 3D vapor-generation device has attractive applications in desalination as well as industrial and domestic wastewater abatement.

    关键词: solar vapor generation,latent heat,hierarchical nanostructures,thermal management,bamboos

    更新于2025-09-04 15:30:14