修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

5 条数据
?? 中文(中国)
  • Growth of vanadium dioxide nanostructures on graphene nanosheets

    摘要: The metal oxide/graphene hybrid nanomaterials have been known as promising functional materials for advanced applications such as high capacitive electrode material of secondary batteries, and high sensitive material of high performance gas sensors. Here, morphology controlled vanadium dioxide (VO2) nanostructures were grown on Si wafer and exfoliated graphene by the vapor transport method using a horizontal furnace system. One-dimensional VO2 nanowires were grown on SiO2(300 nm)/Si substrate under 0.4 kPa condition. On the other hand, thick polycrystalline of VO2 platelets were grown on exfoliated graphene nanosheets under 0.4 kPa condition. In addition, polycrystalline VO2 platelets were only grown on exfoliated graphene nanosheets under 101 kPa (atmospheric pressure) condition. The growth of polycrystalline VO2 platelets on graphene nanosheets in atmospheric pressure condition is attributed to preferential growth on functional group of graphene surface such as carbonyl. The functional group is served as nucleation site of VO2 nanostructures.

    关键词: Nanostructures,Hybrid Nanomaterials,Vapor Transport Method,Graphene,Vanadium Dioxide

    更新于2025-09-23 15:23:52

  • Soluble and insoluble polymer-inorganic systems based on poly(methyl methacrylate), modified with ZrO2-LnO1.5 (Ln = Eu, Tb) nanoparticles: Comparison of their photoluminescence

    摘要: The study of the lanthanide ion luminescence as a function of their environment in polymer-inorganic composites is necessary for better understanding of the electron energy transfer processes in a condensed state. From a practical point of view, these materials are promising for optics and medicine. The nanoparticles of ZrO2-LnO1.5 (Ln = Eu, Tb) solid solutions were synthesized by hydrothermal method. The surface functionalization of the obtained nanoparticles by vinyl groups was carried out using 3-(trimethoxysilyl)propyl methacrylate. Soluble and cross-linked composites based on poly(methyl methacrylate) with ZrO2-LnO1.5 nanoparticles were synthesized using radical polymerization in solution and bulk. Molecular weight, thermal stability, and microhardness of the obtained composite materials were determined. The influence of both the polymerization conditions and the forming composite structure on the lanthanide ion photoluminescence in ZrO2 nanoparticles covalently bonded to the polymer matrix was studied. The combination of ZrO2-EuO1.5 and ZrO2-TbO1.5 nanoparticles in the poly(methyl methacrylate) resulted in the production of composites with photoluminescence spectra overlapping the red and green regions of the visible range. It was shown that the structure of the composite affects the absorbing capacity of luminescent centers and allows shifting the excitation spectrum in the longer wavelength region.

    关键词: hydrothermal synthesis,poly(methyl methacrylate),rare-earth ions,solid solutions,zirconia,hybrid nanomaterials

    更新于2025-09-23 15:21:21

  • Fabrication of virus metal hybrid nanomaterials: An ideal reference for bio semiconductor

    摘要: Recently, Nanotechnology has made easier utilizing plant pathogens as a potential nano-material in biomedical applications. In this research work, we have exploited a devastating plant pathogenic virus of Squash leaf curl China virus (SLCCNV), as a nano-bio template (32 nm) to fabricate the gold and silver nanomaterials. This is achieved through the direct exposure of SLCCNV to gold chloride (HAuCl4) and silver nitrate (AgNO3) precursors at sunlight, resulted into SLCCNV-metallic-hybrid nanomaterials which are synthesized quick ((cid:1)5 min) and eco-friendly. However, virus hybrid nanomaterials are fabricated through the nucleation and growth of metal precursors over the pH-activated capsid of SLCCNV. Under the controlled fabrication process, it produced a highly arrayed virus-metallic-hybrid nanomaterial at nanoscale size limit. Its properties are thoroughly studied through spectroscopic techniques (UV–Vis, DLS, Raman) and electron microscopy (HRTEM & FESEM). In a follow-up study of cytotoxicity assay, the virus and its fabricated nanomaterials show better biocompatibility features even at high concentrations. Finally, the electrical conductivities of virus-metallic-hybrid nanomaterials (Au & Ag) are determined by simple ‘‘lab on a chip” system and Keithley’s pico-ammeter. The result of electrical conductivity measurement revealed that hybrid nanomaterials have greater electrical conductive properties within the band-gap of semi-conductive materials. It is truly remarkable that a plant virus associated metal nanomaterials can be ef?ciently used as bio-semi-conductors which are the ideal one for biomedical applications.

    关键词: Virus hybrid nanomaterials,Electrical conductivity,Virus template,Virus nanotechnology,Biocompatibility,Surface biomineralization

    更新于2025-09-23 15:21:01

  • New Insights on the Photodegradation of Caffeine in the Presence of Bio-Based Substances-Magnetic Iron Oxide Hybrid Nanomaterials

    摘要: The exploitation of organic waste as a source of bio-based substances to be used in environmental applications is gaining increasing interest. In the present research, compost-derived bio-based substances (BBS-Cs) were used to prepare hybrid magnetic nanoparticles (HMNPs) to be tested as an auxiliary in advanced oxidation processes. Hybrid magnetic nanoparticles can be indeed recovered at the end of the treatment and re-used in further water purification cycles. The research aimed to give new insights on the photodegradation of caffeine, chosen as marker of anthropogenic pollution in natural waters, and representative of the contaminants of emerging concern (CECs). Hybrid magnetic nanoparticles were synthetized starting from Fe(II) and Fe(III) salts and BBS-C aqueous solution, in alkali medium, via co-precipitation. Hybrid magnetic nanoparticles were characterized via X-ray diffraction (XRD), thermo-gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. The effect of pH, added hydrogen peroxide, and dissolved oxygen on caffeine photodegradation in the presence of HMNPs was assessed. The results allow for the hypothesis that caffeine abatement can be obtained in the presence of HMNPs and hydrogen peroxide through a heterogeneous photo-Fenton mechanism. The role of hydroxyl radicals in the process was assessed examining the effect of a selective hydroxyl radical scavenger on the caffeine degradation kinetic.

    关键词: hybrid nanomaterials,photo Fenton,caffeine,advanced oxidation processes,magnetic materials,bio-based substances

    更新于2025-09-19 17:15:36

  • Bio‐Assisted Tailored Synthesis of Plasmonic Silver Nanorings and Site‐Selective Deposition on Graphene Arrays

    摘要: The spontaneous interaction between noble metals and biological scaffolds enables simple and cost-effective synthesis of nanomaterials with unique features. Here, plasmonic silver nanorings are synthesized on a ring-like protein, i.e., a peroxiredoxin (PRX), and used to assemble large arrays of functional nanostructures. The PRX drives the seeding growth of metal silver under wet reducing conditions, yielding nanorings with outer and inner diameters down to 28 and 3 nm, respectively. The obtained hybrid nanostructures are selectively deposited onto a solid-state 2D membrane made of graphene in order to prepare plasmonic nanopores. In particular, the interaction between the graphene and the PRX allows for the simple preparation of ordered arrays of plasmonic nanorings on a 2D-material membrane. This fabrication process can be finalized by drilling a nanometer scale pore in the middle of the ring. Fluorescence spectroscopic measurements in combination with numerical simulations demonstrate the plasmonic effects induced in the metallic nanoring cavity. The prepared nanopores represent one of the first examples of hybrid plasmonic nanopore structures integrated on a 2D-material membrane. The diameter of the nanopore and the atomically thick substrate make this proof-of-concept approach particularly interesting for nanopore-based technologies and applications such as next-generation sequencing and single-molecule detection.

    关键词: plasmonics,selective-deposition,nanopores,hybrid-nanomaterials,silver nanorings

    更新于2025-09-12 10:27:22