- 标题
- 摘要
- 关键词
- 实验方案
- 产品
过滤筛选
- 2019
- 2018
- infrared image
- target detection
- lucas–kanade method (LK)
- local contrast method (LCM)
- facet model
- target detection
- zero-crossing point
- Image processing
- Infrared camera
- Eye movement
- Optoelectronic Information Science and Engineering
- Chinese Academy of Sciences
- Gunma University
- University of Chinese Academy of Science
- Xi’an Institute of Optics and Precision Mechanics Chinese Academy of Science
- University of Science and Technology of China
- Space Star Technology Co. LTD
-
A statistical learning method for image-based monitoring of the plume signature in laser powder bed fusion
摘要: The industrial breakthrough of metal additive manufacturing processes mainly involves highly regulated sectors, e.g., aerospace and healthcare, where both part and process qualification are of paramount importance. Because of this, there is an increasing interest for in-situ monitoring tools able to detect process defects and unstable states since their onset stage during the process itself. In-situ measured quantities can be regarded as “signatures” of the process behaviour and proxies of the final part quality. This study relies on the idea that the by-products of laser powder bed fusion (LPBF) can be used as process signatures to design and implement statistical monitoring methods. In particular, this paper proposes a methodology to monitor the LPBF process via in-situ infrared (IR) video imaging of the plume formed by material evaporation and heating of the surrounding gas. The aspect of the plume naturally changes from one frame to another following the natural dynamics of the process: this yields a multimodal pattern of the plume descriptors that limits the effectiveness of traditional statistical monitoring techniques. To cope with this, a nonparametric control charting scheme is proposed, called K-chart, which allows adapting the alarm threshold to the dynamically varying patterns of the monitored data. A real case study in LPBF of zinc powder is presented to demonstrate the capability of detecting the onset of unstable conditions in the presence of a material that, despite being particularly interesting for biomedical applications, imposes quality challenges in LPBF because of its low melting and boiling points. A comparison analysis is presented to highlight the benefits provided by the proposed approach against competitor methods.
关键词: Process plume,Metal additive manufacturing,Laser powder bed fusion,Infrared imaging,In-situ monitoring,Zinc
更新于2025-11-28 14:24:20
-
Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum
摘要: Directly accessing the middle infrared, the molecular functional group spectral region, via supercontinuum generation processes based on turn-key fiber lasers offers the undeniable advantage of simplicity and robustness. Recently, the assessment of the coherence of the mid-IR dispersive wave in silicon nitride (Si3N4) waveguides, pumped at telecom wavelength, established an important first step towards mid-IR frequency comb generation based on such compact systems. Yet, the spectral reach and efficiency still fall short for practical implementation. Here, we experimentally demonstrate that large cross-section Si3N4 waveguides pumped with 2 μm fs-fiber laser can reach the important spectroscopic spectral region in the 3–4 μm range, with up to 35% power conversion and milliwatt-level output powers. As a proof of principle, we use this source for detection of C2H2 by absorption spectroscopy. Such result makes these sources suitable candidate for compact, chip-integrated spectroscopic and sensing applications.
关键词: mid infrared,photonic chip,gas spectroscopy,supercontinuum generation,fiber laser
更新于2025-11-28 14:23:57
-
Practical methodology for <i>in situ</i> measurement of micro flow rates using laser diode absorption sensors
摘要: A laser diode-based flowmeter based on the infrared absorption method that can measure in situ micro flow rates from 0.2 to 20 ml h?1 was developed. A 1450 nm laser absorbed in water was irradiated to form a heated spot at 0 mm, and the temperature was measured upstream and downstream of the heated spot. The flow rate was measured by the temperature difference obtained by two diode lasers and photodetectors upstream and downstream of the heated spot. We measured the temperature profile of the flow rate by changing the temperature measurement position and the heating laser energy upstream and downstream of the heated spot, and compared the measurements with the simulation results. As the flow rate increased, the temperature profile shifted downstream, and the measured temperature upstream and downstream were analyzed according to the flow rate. The flow measurement range was adjusted according to the temperature measurement position. Increasing the energy of the heating laser also improved the measurement accuracy in the lower flow range. The developed flowmeter was calibrated by the gravimetric method, and the deviation and measurement uncertainty according to the flow rate were obtained. The maximum measurement uncertainty was 6.8% at a 1 ml h?1 flow rate, and the minimum measurement uncertainty was 1.78% at 8 ml h?1. Thus, it was confirmed that the flow rate can be measured through the temperature difference gauged using a simple diode laser set. Using the laser diode-based flowmeter developed in this study, one can measure the flow rate in situ without injecting contaminants, such as particles, for measurements without cutting the piping. In addition, it can be manufactured in a miniaturized form at a low cost, and thus, it can be used for multi-drug infusion analysis, semiconductor process monitoring, etc.
关键词: near infrared absorption,diode laser,micro flow rate,thermal mass flowmeter
更新于2025-11-25 10:30:42
-
Nanogold-core Multifunctional Dendrimer for Pulsatile Chemo-, Photothermal- and Photodynamic- Therapy of Rheumatoid Arthritis
摘要: This investigation reports a novel nanoGold-core multifunctional dendrimer for pulsatile chemo-, photothermal- and photodynamic- therapy of rheumatoid arthritis (RA). Architecturally, the nanocomposites comprised of a nanoGold (Au) at the focal whose surface is functionalized by hydroxy-terminated thiolated-dendrons following Au-thiol bond formation to produce nanoGold-core multifunctional dendrimer (Au-DEN). The surface hydroxyl groups of Au-DEN were then conjugated with methotrexate (MTX; a disease-modifying first line anti-rheumatic drug; DMARD; 74.29±0.48 % loading) to form Au-DEN-MTX-NPs (Particle size: 100.15±28.36 nm; poly dispersibility index, PDI: 0.39±0.02; surface zeta potential, ζ: -22.45±1.06 mV). MTX was strategically selected to serve as an anti-rheumatic DMARD as well as a targeting ligand to attain selective localization of the formulation in arthritic tissue via folate receptors upregulated on arthritic tissues. The docking study was performed to confirm the viable binding efficiency of MTX towards β-folate receptors that are overexpressed on arthritic tissues taking folic acid as a reference standard. The IR780, a NIR active bioactive was also loaded in Au-DEN-MTX NPs to offer photothermal benefit upon irradiation with NIR laser (wavelength: 808 nm). The hypothesis was tested by elucidation of in vitro drug release profile, photothermal activity, cellular uptake (Fluorescence and confocal laser scanning microscopy; CLSM), cell viability assay (MTT protocol) and Intracellular reactive oxygen species (ROS) generation in mouse macrophage RAW264.7 cells and Lipopolysaccharide (LPS) activated RAW264.7 cells. Furthermore, the hemolytic toxicity and stability studies were also investigated to determine the blood compatibility as well as ideal storage condition of NPs. The outcome of this investigations presents developed multifunctional targeted NPs to be potential therapeutics for the improved treatment of RA. The approach can also be applied to other clinical interventions involving countering inflammatory conditions.
关键词: Rheumatoid arthritis,NanoGold-core multifunctional dendrimer,Methotrexate,Photothermal,Near-infrared,Dendron
更新于2025-11-21 11:24:58
-
Src Kinase Controls Signaling Pathways In Sensory Neuron Triggered By Low-Power Infrared Radiation
摘要: Low-power (non-thermal) infrared (IR) radiation with the wavelength of 10.6 μm activates the Na,K-ATPase transducer function in sensory neurons, which is manifested in decrease of NaV1.8 channel voltage sensitivity at the cellular membrane level and in inhibition of growth of chick embryo dorsal root ganglia neurites at the tissue level. It is shown that the effect of low-power IR radiation is totally blocked by a specific Src kinase inhibitor PP2. Upon irradiation on the background of PP2, the effective charge of NaV1.8 channel activation gating system does not differ from its control value in patch-clamp experiments, and the area index of sensory ganglia neurites growth remains unchanged as compared to the control in organotypic tissue culture. The data obtained demonstrate that Src kinase is involved in intracellular signaling pathways triggered by CO2 laser low-power IR radiation by the transducer-activated mechanism. This is the first indication that in primary sensory neuron the signals of low-power IR radiation are sensed, amplified and transduced by the Na,K-ATPase/Src complex and not by G proteins.
关键词: Src kinase,infrared radiation,Na,K-ATPase,organotypic nerve tissue culture,NaV1.8 channels,sensory neuron,patch-clamp method
更新于2025-11-21 11:24:58
-
Near-infrared upconversion–activated CRISPR-Cas9 system: A remote-controlled gene editing platform
摘要: As an RNA-guided nuclease, CRISPR-Cas9 offers facile and promising solutions to mediate genome modification with respect to versatility and high precision. However, spatiotemporal manipulation of CRISPR-Cas9 delivery remains a daunting challenge for robust effectuation of gene editing both in vitro and in vivo. Here, we designed a near-infrared (NIR) light–responsive nanocarrier of CRISPR-Cas9 for cancer therapeutics based on upconversion nanoparticles (UCNPs). The UCNPs served as “nanotransducers” that can convert NIR light (980 nm) into local ultraviolet light for the cleavage of photosensitive molecules, thereby resulting in on-demand release of CRISPR-Cas9. In addition, by preparing a single guide RNA targeting a tumor gene (polo-like kinase-1), our strategies have successfully inhibited the proliferation of tumor cell via NIR light–activated gene editing both in vitro and in vivo. Overall, this exogenously controlled method presents enormous potential for targeted gene editing in deep tissues and treatment of a myriad of diseases.
关键词: cancer therapeutics,upconversion nanoparticles,gene editing,CRISPR-Cas9,near-infrared
更新于2025-11-21 11:08:12
-
A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation
摘要: Four-dimensional (4D) printing is an emerging and highly innovative additive manufacturing process by which to fabricate pre-designed, self-assembly structures with the ability to transform over time. However, one of the critical challenges of 4D printing is the lack of advanced 4D printing systems that not only meet all the essential requirements of shape change but also possess smart, dynamic capabilities to spatiotemporally and instantly control the shape-transformation process. Here, we present a facile 4D printing platform which incorporates nanomaterials into the conventional stimuli-responsive polymer, allowing the 4D printed object to achieve a dynamic and remote controlled, on-time and position shape transformation. A proof-of-concept 4D printed brain model was created using near-infrared light (NIR) responsive nanocomposite to evaluate the capacity for controllable 4D transformation, and the feasibility of photothermal stimulation for modulating neural stem cell behaviors. This novel 4D printing strategy can not only be used to create dynamic 3D patterned biological structures that can spatiotemporally control their shapes or behaviors of transformation under a human benign stimulus (NIR), but can also provide a potential method for building complex self-morphing objects for widespread applications.
关键词: brain,4D printing,dynamically and remotely controllable,neural stem cell,near-infrared light responsive,graphene
更新于2025-11-21 11:08:12
-
A near-infrared BODIPY-based fluorescent probe for ratiometric and discriminative detection of Hg2+ and Cu2+ ions in living cells
摘要: A near-infrared distyryl boron dipyrromethene-based sensor bearing one bis(1,2,3-triazole)amino receptor has been synthesized. This probe selectively and quickly binds to Hg2+ and Cu2+ ions in CH3CN/H2O (5:1 v/v) and exhibits remarkably blue-shifted absorption and fluorescence bands due to the inhibition of the intramolecular charge transfer process. The fluorescence changes of this probe upon binding to Hg2+ or Cu2+ ion are totally different, undergoing a ratiometric fluorescence enhancement (for Hg2+) or a fluorescence quenching (for Cu2+) mechanism. The corresponding vivid color changes can be easily seen by the naked eye. This probe was further introduced into Hela cells for living cell imaging and found to discriminate Hg2+ and Cu2+ ions through two near-infrared fluorescence emission channels. These overall results indicate that this Click-derived near-infrared BODIPY-based probe is potentially useful for ratiometric and discriminative detection of Hg2+ and Cu2+ ions in solutions and living cells.
关键词: Discriminative detection,Ratiometric,Hg2+ and Cu2+ sensor,Near-infrared,BODIPY
更新于2025-11-21 11:08:12
-
A Near Infrared-Modulated Thermosensitive Hydrogel for Stabilization of Indocyanine Green and Combinatorial Anticancer Phototherapy
摘要: Indocyanine green (ICG), a multifunctional near-infrared (NIR) imaging agent approved by the FDA, has been extensively used in clinical cancer theranosis, but limited by its inherent instability, short plasma half-life and lack of targeting ability. Herein, an in situ formed photothermal network based thermosensitive hydrogel (PNT-gel) constructed by supramolecular cross-linking conjugated polymers was developed for stabilization of ICG and efficient combinatorial photothermal/photodynamic antitumor therapy. While the conjugated polymeric backbone in PNT-gel anchored the aromatic phototherapeutic agent ICG via π–π stacking interactions to avoid premature leakage, it also directly converted low-dose NIR light to induce localized hyperthermia to enhance the photothermal effect. The PNT-gel shows a reversible gel-to-sol upper critical solution temperature (UCST) that is slightly above the body temperature. Therefore, the controlled release of ICG was switched on or off by NIR via photothermal-induced gel-sol transition. In vitro and in vivo antitumor experiments demonstrated that ICG loaded PNT-gel not only efficiently induced the killing of 4T1 cancer cells, but also achieved almost complete eradication of 4T1 cells by one-dose in combinatorial photothermal/photodynamic therapy under irradiation of a low-dose 808 nm laser (0.14 W cm-2). Additionally, the combinational therapy proved to enhance the effectiveness of photodestruction without tumor recurrence compared with intratumoral injection photothermal therapy (PTT) or photodynamic therapy (PDT) treatment alone.
关键词: Near Infrared-Modulated Thermosensitive Hydrogel,Combinatorial Anticancer Phototherapy,Indocyanine Green,Photodynamic Therapy,Photothermal Therapy
更新于2025-11-21 11:08:12
-
Selective Detection of Trinitrophenol by Amphiphilic Dimethylaminopyridine-Appended Zn(II)phthalocyanines at the Near-Infrared Region
摘要: Novel amphiphilic Zn(II)phthalocyanines (ZnPcs) peripherally substituted with four and eight dimethylaminopyridinium units (ZnPc1 and ZnPc2) were synthesized by cyclotetramerization of the corresponding phthalonitriles. The effect of aggregation and photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation under light irradiation) properties was investigated. The chemosensing ability of ZnPcs toward explosive nitroaromatic compounds was explored in aqueous medium. This study demonstrates that ZnPc1 and ZnPc2 show fluorescence quenching behavior upon interaction with different nitro analytes and show unprecedented selectivity toward 2,4,6-trinitrophenol with a limit of detection (LOD) of 0.7?1.1 ppm with a high quenching rate constant (Ksv) of 1.6?2.02 × 105. The near-infrared (NIR) fluorescence in thin films was quenched efficiently because of the photoinduced electron-transfer process through strong intermolecular π?π and electrostatic interactions. The sensing process is highly reversible and free from the interference of other commonly encountered nitro analytes. Further, experiments were performed to demonstrate the use of ZnPcs as efficient heterogeneous photocatalysts in the reduction of nitro explosives. The smart dual performance of multicharged ZnPcs in aqueous media quantifies them as attractive candidates in developing sensor materials at the NIR region and to possibly convert the toxic explosives into useful scaffolds. These results provide an interesting perspective toward elaboration of stable fluorescent systems for the selective sensing behavior of nitro explosives and their facile heterogeneous catalytic behavior in the reduction reactions.
关键词: trinitrophenol,photocatalysis,explosive detection,near-infrared,fluorescence quenching,dimethylaminopyridinium,Zn(II)phthalocyanines
更新于2025-11-21 11:08:12