- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Enhanced photovoltaic performance and stability of perovskite solar cells by interface engineering with poly(4-vinylpyridine) and Cu2ZnSnS4&CNT
摘要: Organic-inorganic perovskite solar cells (PSCs) are emerging candidates for next generation photovoltaic devices. In the last decade, PSCs have depicted a rapid development in device performance, meanwhile, the issue of utilizing low-cost, non-toxic materials with chemical stability as well as long term device stabilities are still lacking. To address these issues, an inexpensive, eco-friendly, and environmentally stable nanostructure of the quaternary chalcogenide Cu2ZnSnS4 (CZTS) as an inorganic hole transport material (HTM) has been investigated. Moreover, simultaneously two strategies has been employed to optimize the photovoltaic parameters. First, an interlayer of poly(4-vinylpyridine) (PVP) has been applied between the perovskite and the hole transport layer (HTL). Second, single-walled carbon nanotubes (CNTs) is incorporated into the CZTS HTL. While, the latter only result in higher short circuit current density (Jsc) from 18.3 to 20 mA cm?2, by using both of the strategies an increase in open circuit voltage (Voc) from 0.98 to 1.05 V as well as Jsc from 18.3 to 20.5 mA cm?2 has been observed. The power conversion efficiency (PCE) of the record device reached to 15.2%, fill factor (FF) increased up to 70% and also demonstrated low hysteresis of 2.3%. The formation of hydrophobic CNT webs among the sphere-like CZTS nanostructures and the presence of the PVP polymeric interlayer results in highly stable devices, which retained more than 98% of the initial PCE at room temperature and 40–45% humidity after 30 days. Thus, our results show that the combination of PVP interlayer and CZTS&CNT HTL offer an opportunity for the scalability of PSCs.
关键词: Cu2ZnSnS4,Inorganic hole transport materials,Stability,Carbon nanotubes,Poly(4-vinylpyridine)
更新于2025-09-23 15:19:57
-
Performance of WO <sub/>3</sub> -Incorporated Carbon Electrodes for Ambient Mesoscopic Perovskite Solar Cells
摘要: The stability of perovskite solar cells (PSC) is often compromised by the organic hole transport materials (HTMs). We report here the effect of WO3 as an inorganic HTM for carbon electrodes for improved stability in PSCs, which are made under ambient conditions. Sequential fabrication of the PSC was performed under ambient conditions with mesoporous TiO2/Al2O3/CH3NH3PbI3 layers, and, on the top of these layers, the WO3 nanoparticle-embedded carbon electrode was used. Different concentrations of WO3 nanoparticles as HTM incorporated in carbon counter electrodes were tested, which varied the stability of the cell under ambient conditions. The addition of 7.5% WO3 (by volume) led to a maximum power conversion efficiency of 10.5%, whereas the stability of the cells under ambient condition was ~350 h, maintaining ~80% of the initial efficiency under light illumination. At the same time, the higher WO3 concentration exhibited an efficiency of 9.5%, which was stable up to ~500 h with a loss of only ~15% of the initial efficiency under normal atmospheric conditions and light illumination. This work demonstrates an effective way to improve the stability of carbon-based perovskite solar cells without affecting the efficiency for future applications.
关键词: inorganic hole transport materials,stability,perovskite solar cells,carbon electrodes,WO3,ambient conditions
更新于2025-09-12 10:27:22