- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Ratiometric Electrogenerated Chemiluminescence Cytosensor Based on Conducting Polymer Hydrogel Loaded with Internal Standard Molecules
摘要: A sensitive and reliable bimodal electrochemiluminescent (ECL) system based on CdTe Quantum Dots (QDs) and luminol as double luminophores is constructed. CdTe QDs tagged with the aptamer (CdTe-Apt 2) of cancer cells are used as the detection signal, while luminol molecules are used as internal standards. The electrodeposited polyaniline based conducting polymer hydrogel (CPH) on the electrode surfaces improves the biocompatibility and conductivity of the sensing interfaces effectively. Furtherly, electron transfer is probably much easier when luminol and coreactant potassium persulfate (K2S2O8) immobilized in the CPH compared to that in solution. Cancer cells are captured to the electrode surface by another aptamer linked to the Au nanoparticles immobilized in the CPH through Au-S bonds. In the developed bimodal ECL system, internal standard method is used to quantify cancer cells by comparing the differences in sensitivity of the double-peak ECL signals with that of target analytes. The internal standard method of ECL strategy can provide very accurate detection results in complex environment because interferences in the system can be eliminated through the self-calibration of two emission spectra. A linear relation is found based on the ?ECLCdTe/?ECLluminol against the concentration of cancer cells within 100 to 6500 cells mL-1 under optimized conditions. The developed ratiometric ECL cytosensor with internal standard can significantly improve the accuracy and reliability of cell assay in complex biological media, demonstrating promising applications in healthcare monitoring and clinical diagnostics.
关键词: Cytosensor,Electrogenerated Chemiluminescence,Internal standard method,Conducting Polymer Hydrogel,Cancer cells
更新于2025-09-23 15:21:21
-
4-Mercaptobenzoic Acid Labeled Gold-Silver-Alloy-Embedded Silica Nanoparticles as an Internal Standard Containing Nanostructures for Sensitive Quantitative Thiram Detection
摘要: In this study, (4-mercaptobenzoic acid labeled SiO2@Au@4-MBA@Ag gold-silver-alloy-embedded silica nanoparticles) nanomaterials were investigated for the detection of thiram, a pesticide. First, the presence of Au@4-MBA@Ag alloys on the surface of SiO2 was confirmed by the broad bands of ultraviolet-visible spectra in the range of 320–800 nm. The effect of the 4-MBA (4-mercaptobenzoic acid) concentration on the Ag shell deposition and its intrinsic SERS (surface-enhanced Raman scattering) signal was also studied. Ag shells were well coated on SiO2@Au@4-MBA in the range of 1–1000 μM. The SERS intensity of thiram-incubated SiO2@Au@4-MBA@Ag achieved the highest value by incubation with 500 μL thiram for 30 min, and SERS was measured at 200 μg/mL SiO2@Au@4-MBA@Ag. Finally, the SERS intensity of thiram at 560 cm?1 increased proportionally with the increase in thiram concentration in the range of 240–2400 ppb, with a limit of detection (LOD) of 72 ppb.
关键词: gold–silver-alloy-embedded silica nanoparticles,internal standard,thiram,ultrasensitive detection
更新于2025-09-16 10:30:52