修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • Response of Inner Retinal Oxygen Extraction Fraction to Light Flicker Under Normoxia and Hypoxia in Rat

    摘要: PURPOSE. Oxygen extraction fraction (OEF), defined by the ratio of oxygen metabolism (MO2) to delivery (DO2), determines the level of compensation of MO2 by DO2. In the current study, we tested the hypothesis that inner retinal OEF remains unchanged during light flicker under systemic normoxia and hypoxia in rats due to the matching of MO2 and DO2. METHODS. Retinal vascular oxygen tension (PO2) measurements were obtained in 10 rats by phosphorescence lifetime imaging. Inner retinal OEF was derived from vascular PO2 based on Fick's principle. Measurements were obtained before and during light flicker under systemic normoxia and hypoxia. The effects of light flicker and systemic oxygenation on retinal vascular PO2 and OEF were determined by ANOVA. RESULTS. During light flicker, retinal venous PO2 decreased (P < 0.01, N = 10), while inner retinal OEF increased (P = 0.02). Under hypoxia, retinal arterial and venous PO2 decreased (P < 0.01), while OEF increased (P < 0.01). The interaction effect was not significant on OEF (P = 0.52), indicating the responses of OEF to light flicker were similar under normoxia and hypoxia. During light flicker, OEF increased from 0.46 ± 0.13 to 0.50 ± 0.11 under normoxia, while under hypoxia, OEF increased from 0.67 ± 0.16 to 0.74 ± 0.14. CONCLUSIONS. Inner retinal OEF increased during light flicker, indicating the relative change in DO2 is less than that in MO2 in rats under systemic normoxia and hypoxia. Inner retinal OEF is a potentially useful parameter for assessment of the relative changes of MO2 and DO2 under physiologic and pathologic conditions.

    关键词: vascular oxygen tension,retina,oxygen extraction fraction,hypoxia,light flicker

    更新于2025-09-23 15:22:29

  • A Procedure for Mitigating the Light Flicker in Office LED Lighting Caused by Voltage Fluctuations

    摘要: Progress in the development of LED technologies has reached a state which justifies the replacement of lighting with traditional light sources, not only in new buildings but also in existing, older ones. One of such replacements was used as an example of a lighting flicker study presented in this paper. The results of initial measurements indicated that Rapid Voltage Changes (RVCs) are the cause of light flicker. The procedure was introduced and described in this paper to provide the necessary actions to mitigate the light flicker in LED lighting. In order to fulfil this task, the source of locally induced voltage fluctuations has to be identified. A method of identification was developed and a multi-function office printer was identified as the source of RVCs. Using a less sensitive LED driver, changing the connection point of the interfering device, and improving the electrical installation were considered as a set of possible solutions. Laboratory measurements have shown significant sensitivity of the LED driver to RVCs. The identified source of voltage disturbances was confirmed by a simulation of supply voltage variation in the presence of such device in Matlab Simulink with the use of digital flickermeter.

    关键词: voltage fluctuations,light flicker,sensitivity of LED drivers,digital flickermeter,power control with zero voltage crossing

    更新于2025-09-23 15:19:57