- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
[IEEE 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Chicago, IL, USA (2019.6.16-2019.6.21)] 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) - Test-Based Modeling of Photovoltaic Inverter Impact on Distribution Systems
摘要: AC voltage regulation is required in both the domestic and industrial sectors to avoid undesired effects from random voltage variations of the power supply. The paper introduces an ac voltage stabilizer/converter (ACVS) that is based on a controllable autotransformer technology. The proposed ACVS offers a specified strategy of voltage regulation, less harmonics, and low cost. The paper explains the operating principle of the ACVS and derives its nonlinear mathematical model. To ensure the desired performance of the ACVS while it is subject to uncertain input voltage and load variations, an optimal control strategy is designed. It is achieved via transforming the ACVS model extending with fictive axis emulation into a rotating reference frame and the linearization of the model via specific orientation of the reference frame and introducing a linear control action. Operation of the ACVS is simulated under different disturbances due to load and grid voltage changes, and compared to voltage stabilization with application of I and PI controllers. Experimental results are presented to demonstrate the voltage regulation technology.
关键词: AC–AC power conversion,electric variables control,linear-quadratic control,power quality,voltage control
更新于2025-09-23 15:19:57
-
[IEEE 2019 7th International Youth Conference on Energy (IYCE) - Bled, Slovenia (2019.7.3-2019.7.6)] 2019 7th International Youth Conference on Energy (IYCE) - Retrofit of the Lighting System in Common Spaces of Buildings
摘要: AC voltage regulation is required in both the domestic and industrial sectors to avoid undesired effects from random voltage variations of the power supply. The paper introduces an ac voltage stabilizer/converter (ACVS) that is based on a controllable autotransformer technology. The proposed ACVS offers a specified strategy of voltage regulation, less harmonics, and low cost. The paper explains the operating principle of the ACVS and derives its nonlinear mathematical model. To ensure the desired performance of the ACVS while it is subject to uncertain input voltage and load variations, an optimal control strategy is designed. It is achieved via transforming the ACVS model extending with fictive axis emulation into a rotating reference frame and the linearization of the model via specific orientation of the reference frame and introducing a linear control action. Operation of the ACVS is simulated under different disturbances due to load and grid voltage changes, and compared to voltage stabilization with application of I and PI controllers. Experimental results are presented to demonstrate the voltage regulation technology.
关键词: electric variables control,power quality,AC–AC power conversion,linear-quadratic control,voltage control
更新于2025-09-19 17:13:59
-
[IEEE 2019 21st International Conference on Transparent Optical Networks (ICTON) - Angers, France (2019.7.9-2019.7.13)] 2019 21st International Conference on Transparent Optical Networks (ICTON) - The Influence of the Excited State (ES) Lasing in Quantum Dot-in-a-Well (QDWELL) Structure on the QDWELL Laser Performance in Optical Communication Systems
摘要: AC voltage regulation is required in both the domestic and industrial sectors to avoid undesired effects from random voltage variations of the power supply. The paper introduces an ac voltage stabilizer/converter (ACVS) that is based on a controllable autotransformer technology. The proposed ACVS offers a specified strategy of voltage regulation, less harmonics, and low cost. The paper explains the operating principle of the ACVS and derives its nonlinear mathematical model. To ensure the desired performance of the ACVS while it is subject to uncertain input voltage and load variations, an optimal control strategy is designed. It is achieved via transforming the ACVS model extending with fictive axis emulation into a rotating reference frame and the linearization of the model via specific orientation of the reference frame and introducing a linear control action. Operation of the ACVS is simulated under different disturbances due to load and grid voltage changes, and compared to voltage stabilization with application of I and PI controllers. Experimental results are presented to demonstrate the voltage regulation technology.
关键词: AC–AC power conversion,electric variables control,linear-quadratic control,power quality,voltage control
更新于2025-09-19 17:13:59