- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Quantum phase transition modulation in an atomtronic Mott switch
摘要: Mott insulators provide stable quantum states and long coherence times due to small number fluctuations, making them good candidates for quantum memory and atomic circuits. We propose a proof-of-principle for a 1D Mott switch using an ultracold Bose gas and optical lattice. With time-evolving block decimation simulations—efficient matrix product state methods—we design a means for transient parameter characterization via a local excitation for ease of engineering into more complex atomtronics. We perform the switch operation by tuning the intensity of the optical lattice, and thus the interaction strength through a conductance transition due to the confined modifications of the 'wedding cake' Mott structure. We demonstrate the time-dependence of Fock state transmission and fidelity of the excitation as a means of tuning up the device in a double well and as a measure of noise performance. Two-point correlations via the g(2) measure provide additional information regarding superfluid fragments on the Mott insulating background due to the confinement of the potential.
关键词: quantum gas,atomtronic switch,optical lattice,atomtronics,quantum phase transition,matrix product states,Mott insulator
更新于2025-09-23 15:23:52