- 标题
- 摘要
- 关键词
- 实验方案
- 产品
-
Robot path planning with two-axis positioner for non-ideal sphere-pipe joint welding based on laser scanning
摘要: The conversion and degradation of organic pollutants remain challenges relating to environmental science. Herein, we report the carbonization of organic pollutants (4-nitrophenol, 4-NP) toward metal-free nitrogen-doped graphene quantum dots (N-GQDs) using a one-pot solvothermal route. The resultant N-GQDs demonstrate excellent activity for the catalytic conversion of 4-NP to 4-aminophenol (4-AP) when exposed to near infrared (NIR) light because of their excellent upconverted photoluminescence and photothermal conversion ability. The NIR-enhanced reduction efficiency of 4-NP to 4-AP not only originates from the enhanced collisions between N-GQDs and 4-NP due to photothermal-increased Brownian movement of molecules, but also comes from the accelerated transfer rate of electrons produced by the photoexcitation of N-GQDs under NIR irradiation. The N-GQDs display excellent photostability and remain high activity even after five cycles of reuse. Such conversion of organic pollutants to highly efficient metal-free carbocatalysts has significant importance in relevance of the industrial production of aniline and paracetamol.
关键词: organic pollutants,metal-free photocatalysts,4-nitrophenol reduction,nitrogen-doped graphene quantum dots,NIR-enhanced catalytic activity
更新于2025-09-19 17:13:59