修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

3 条数据
?? 中文(中国)
  • Bicontinuous network of electron donor-acceptor composites achieved by additive-free sequential deposition for efficient polymer solar cells

    摘要: We report that sequential deposition of a highly crystalline polymer donor and a soluble fullerene acceptor leads to a well-defined interpenetrating network and enhanced power conversion efficiencies in bilayer polymer solar cells. Even without the use of solvent additives, layered thin films of poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3?-di(2-octyldodecyl)-2,2’;5′,2’’;5″,2?-quaterthiophen-5,5?-diyl)] (PffBT4T-2OD) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM), as electron donor and acceptor materials, respectively, showed bicontinuous networks similar to those of a PffBT4T-2OD:PC71BM bulk-heterojunction (BHJ) thin film processed with 1,8-diiodooctane (DIO) as a solvent additive. Transmission electron microscopy results confirmed the BHJ-like morphology of the bilayered PffBT4T-2OD/PC71BM thin films. Bilayer solar cells fabricated without the DIO additive produced a power conversion efficiency of η ≈ 7.65%, which is even higher than that of a BHJ solar cell fabricated with the DIO additive (η ≈ 7.04%). These results demonstrate that a highly crystalline polymer donor and an electron-accepting small molecule can be a good combination for efficient bilayer polymer solar cells.

    关键词: Bulkheterojunction,Nanomorphology,Sequential deposition,Organic solar cell,Bilayer

    更新于2025-09-23 15:21:01

  • Elucidation of Donor:Acceptor Phase Separation in Nonfullerene Organic Solar Cells and Its Implications on Device Performance and Charge Carrier Mobility

    摘要: In bulk-heterojunction solar cells, the device performance strongly depends on the donor and acceptor properties, the phase separation in the absorber layer, and the formation of a bicontinuous network. While this phase separation is well explored for polymer:fullerene solar cells, only little is known for polymer:nonfullerene acceptor solar cells. The main hurdle in this regard is often the chemical similarity of the conjugated polymer donor and the organic nonfullerene acceptor (NFA), which makes the analysis of the phase separation via atomic force microscopic (AFM) phase images or conventional transmission electron microscopy difficult. In this work, we use the donor polymer PTB7-Th and the small molecule acceptor O-IDTBR as the model system and visualized the phase separation in PTB7-Th:O-IDTBR bulk-heterojunctions with different donor:acceptor ratios via scanning transmission electron microscopy (STEM) high-angle annular dark-field (HAADF) images and electron energy loss spectroscopy (EELS) based elemental mapping, which resulted in a good contrast between the donor and the acceptor despite very low differences in the chemical composition. AFM as well as grazing-incidence wide-angle X-ray scattering (GIWAXS) investigations support the electron microscopic data. Furthermore, we elucidate the implications of the phase separation on the device performance as well as charge carrier mobilities in the bulk-heterojunction layers, and a high performance of the solar cells was found over a relatively broad range of polymer domain sizes. This can be related to the larger domain sizes of the acceptor phase with higher amounts of O-IDTBR in the blend, while the polymer donor phase still forms continuous pathways to the electrode, which keeps the hole mobility at a relatively constant level.

    关键词: nanomorphology,organic photovoltaics,charge carrier mobility,bulk-heterojunction,scanning transmission electron microscopy

    更新于2025-09-19 17:13:59

  • Elongated Nanodomains and Molecular Intermixing Induced Doping in Organic Photovoltaic Active Layers with Electric Field Treatment

    摘要: The effects of the electric-field-assisted annealing on the bulk heterojunction nano-morphology in the P3HT/PCBM active layer of the organic photovoltaic cells (OPVCs) are presented here. It was widely accepted that the electric-field-assisted annealing will facilitate the P3HT, the polar polymer, to be better crystalline to enhance the charge mobility, hence the improvement of the OPVC performance. The influences on the nano-morphology of the electron donor and accepter domains are not well understood. Here, using the cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S), the electric-field-assisted annealing treatment is found to influence the molecular domains to be elongated along the direction of the external electric field. The elongation of the molecular domains is believed to facilitate the domain percolation, which causes higher charge mobility, hence the higher short-circuit current density (Jsc). On the other hand, it was also observed that the electronic properties of the P3HT-rich and PCBM-rich domains in the electric-field-assisted annealed samples showed smaller energy band gaps and smaller molecular orbital offset between the two domains, which is believed to decrease the open circuit voltage (Voc) and negatively impact the OPVC performance. Based on the X-ray diffraction (XRD) and small angle X-ray scattering (SAXS) results, the altered electronic properties are argued to be due to the molecular intermixing induced doping effects. These results point out competing factors affecting the OPVC performance with the electric-field-assisted annealing treatment.

    关键词: Bulk heterojunction,Cross-sectional scanning tunneling microscopy,Organic Solar Cells,X-ray Diffraction,Small Angle X-ray Scattering,Nanomorphology

    更新于2025-09-12 10:27:22