修车大队一品楼qm论坛51一品茶楼论坛,栖凤楼品茶全国楼凤app软件 ,栖凤阁全国论坛入口,广州百花丛bhc论坛杭州百花坊妃子阁

oe1(光电查) - 科学论文

2 条数据
?? 中文(中国)
  • A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation

    摘要: Four-dimensional (4D) printing is an emerging and highly innovative additive manufacturing process by which to fabricate pre-designed, self-assembly structures with the ability to transform over time. However, one of the critical challenges of 4D printing is the lack of advanced 4D printing systems that not only meet all the essential requirements of shape change but also possess smart, dynamic capabilities to spatiotemporally and instantly control the shape-transformation process. Here, we present a facile 4D printing platform which incorporates nanomaterials into the conventional stimuli-responsive polymer, allowing the 4D printed object to achieve a dynamic and remote controlled, on-time and position shape transformation. A proof-of-concept 4D printed brain model was created using near-infrared light (NIR) responsive nanocomposite to evaluate the capacity for controllable 4D transformation, and the feasibility of photothermal stimulation for modulating neural stem cell behaviors. This novel 4D printing strategy can not only be used to create dynamic 3D patterned biological structures that can spatiotemporally control their shapes or behaviors of transformation under a human benign stimulus (NIR), but can also provide a potential method for building complex self-morphing objects for widespread applications.

    关键词: brain,4D printing,dynamically and remotely controllable,neural stem cell,near-infrared light responsive,graphene

    更新于2025-11-21 11:08:12

  • [Methods in Molecular Biology] Astrocytes Volume 1938 (Methods and Protocols) || Fluorescence-Activated Cell Sorting-Based Isolation and Characterization of Neural Stem Cells from the Adult Zebrafish Telencephalon

    摘要: Adult mammalian brain, including humans, has rather limited addition of new neurons and poor regenerative capacity. In contrast, neural stem cells (NSC) with glial identity and neurogenesis are highly abundant throughout the adult zebrafish brain. Importantly, the activation of NSC and production of new neurons in response to injuries lead to the brain regeneration in zebrafish brain. Therefore, understanding of the molecular pathways regulating NSC behavior in response to injury is crucial in order to set the basis for experimental modification of these pathways in glial cells after injury in the mammalian brain and to elicit neuronal regeneration. Here, we describe the procedure that we successfully used to prospectively isolate NSCs from adult zebrafish telencephalon, extract RNA, and prepare cDNA libraries for next generation sequencing (NGS) and full transcriptome analysis as the first step toward understanding regulatory mechanisms leading to restorative neurogenesis in zebrafish. Moreover, we describe an alternative approach to analyze antigenic properties of NSC in the adult zebrafish brain using intracellular fluorescence activated cell sorting (FACS). We employ this method to analyze the number of proliferating NSCs positive for proliferating cell nuclear antigen (PCNA) in the prospectively isolated population of stem cells.

    关键词: Neural stem cells,Neural stem cell purification,Intracellular FACS,Zebrafish

    更新于2025-09-23 15:23:52